49 research outputs found

    Curare alkaloids from Matis Dart Poison: Comparison with d-tubocurarine in interactions with nicotinic, 5-HT3 serotonin and GABAA receptors.

    Get PDF
    Several novel bisbenzylisoquinoline alkaloids (BBIQAs) have recently been isolated from a Matis tribe arrow poison and shown by two-electrode voltage-clamp to inhibit mouse muscle nicotinic acetylcholine receptors (nAChR). Here, using radioligand assay with Aplysia californica AChBP and radioiodinated α-bungarotoxin ([125I]-αBgt), we show that BBIQA1, BBIQA2, and d-tubocurarine (d-TC) have similar affinities to nAChR orthosteric site. However, a competition with [125I]-αBgt for binding to the Torpedo californica muscle-type nAChR revealed that BBIQAs1, 2, and 3 are less potent (IC50s = 26.3, 8.75, and 17.0 μM) than d-TC (IC50 = 0.39 μM), while with α7 nAChR in GH4C1 cells, BBIQA1 was less potent that d-TC (IC50s = 162 μM and 7.77 μM, respectively), but BBIQA2 was similar (IC50 = 5.52 μM). In inhibiting the Ca2+ responses induced by acetylcholine in Neuro2a cells expressing the mouse adult α1β1εδ nAChR or human α7 nAChR, BBIQAs1 and 2 had similar potencies to d-TC (IC50s in the range 0.75-3.08 μM). Our data suggest that BBIQA1 and BBIQA2 can inhibit adult muscle α1β1εδ nAChR by both competitive and noncompetitive mechanisms. Further experiments on neuronal α3β2, α4β2, and α9α10 nAChRs, expressed in Xenopus laevis oocytes, showed that similar potencies for BBIQAs1, 2, and d-TC. With α3β2γ2 GABAAR currents were almost completely inhibited by d-TC at a high (100 μM) concentration, but BBIQAs1 and 2 were less potent (only 40-50% inhibition), whereas in competition with Alexa Fluor 546-α-cobratoxin for binding to α1β3γ2 GABAAR in Neuro2a cells, d-TC and these analogs had comparable affinities. Especially interesting effects of BBIQAs1 and 2 in comparison with d-TC were observed for 5-HT3AR: BBIQA1 and BBIQA2 were 5- and 87-fold less potent than d-TC (IC50 = 22.63 nM). Thus, our results reveal that these BBIQAs differ from d-TC in their potencies towards certain Cys-loop receptors, and we suggest that understanding the reasons behind this might be useful for future drug design.The work of ENS, IAI, DSK, IVS, AIG, LVS, and VIT was supported by the Russian Science Foundation Grant 16-14-00215 (http://rscf. ru/en). The work of IEK was supported by the Russian Foundation for Basic Research Grant 18- 04-01366 (http://www.rfbr.ru/rffi/eng). The work of SCRL was supported by a Medical Research Council Grant MR L021676 (https://mrc.ukri.org/)

    Azemiopsin, a Selective Peptide Antagonist of Muscle Nicotinic Acetylcholine Receptor: Preclinical Evaluation as a Local Muscle Relaxant

    No full text
    Azemiopsin (Az), a linear peptide from the Azemiops feae viper venom, contains no disulfide bonds, is a high-affinity and selective inhibitor of nicotinic acetylcholine receptor (nAChR) of muscle type and may be considered as potentially applicable nondepolarizing muscle relaxant. In this study, we investigated its preclinical profile in regard to in vitro and in vivo efficacy, acute and chronic toxicity, pharmacokinetics, allergenic capacity, immunotoxicity and mutagenic potency. The peptide effectively inhibited (IC50 ~ 19 nM) calcium response of muscle nAChR evoked by 30 μM (EC100) acetylcholine but was less potent (IC50 ~ 3 μM) at α7 nAChR activated by 10 μM (EC50) acetylcholine and had a low affinity to α4β2 and α3-containing nAChR, as well as to GABAA or 5HT3 receptors. Its muscle relaxant effect was demonstrated at intramuscular injection to mice at doses of 30–300 µg/kg, 30 µg/kg being the initial effective dose and 90 µg/kg—the average effective dose. The maximal muscle relaxant effect of Az was achieved in 10 min after the administration and elimination half-life of Az in mice was calculated as 20–40 min. The longest period of Az action observed at a dose of 300 µg/kg was 55 min. The highest acute toxicity (LD50 510 μg/kg) was observed at intravenous injection of Az, at intramuscular or intraperitoneal administration it was less toxic. The peptide showed practically no immunotoxic, allergenic or mutagenic capacity. Overall, the results demonstrate that Az has good drug-like properties for the application as local muscle relaxant and in its parameters, is not inferior to the relaxants currently used. However, some Az modification might be effective to extend its narrow therapeutic window, a typical characteristic and a weak point of all nondepolarizing myorelaxants

    Fifty Years of Animal Toxin Research at the Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

    No full text
    This review covers briefly the work carried out at our institute (IBCh), in many cases in collaboration with other Russian and foreign laboratories, for the last 50 years. It discusses the discoveries and studies of various animal toxins, including protein and peptide neurotoxins acting on the nicotinic acetylcholine receptors (nAChRs) and on other ion channels. Among the achievements are the determination of the primary structures of the α-bungarotoxin-like three-finger toxins (TFTs), covalently bound dimeric TFTs, glycosylated cytotoxin, inhibitory cystine knot toxins (ICK), modular ICKs, and such giant molecules as latrotoxins and peptide neurotoxins from the snake, as well as from other animal venoms. For a number of toxins, spatial structures were determined, mostly by 1H-NMR spectroscopy. Using this method in combination with molecular modeling, the molecular mechanisms of the interactions of several toxins with lipid membranes were established. In more detail are presented the results of recent years, among which are the discovery of α-bungarotoxin analogs distinguishing the two binding sites in the muscle-type nAChR, long-chain α-neurotoxins interacting with α9α10 nAChRs and with GABA-A receptors, and the strong antiviral effects of dimeric phospholipases A2. A summary of the toxins obtained from arthropod venoms includes only highly cited works describing the molecules’ success story, which is associated with IBCh. In marine animals, versatile toxins in terms of structure and molecular targets were discovered, and careful work on α-conotoxins differing in specificity for individual nAChR subtypes gave information about their binding sites

    Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain

    No full text
    BackgroundParasympathetic innervation of meninges and ability of carbachol, acetylcholine (ACh) receptor (AChR) agonist, to induce headaches suggests contribution of cholinergic mechanisms to primary headaches. However, neurochemical mechanisms of cholinergic regulation of peripheral nociception in meninges, origin place for headache, are almost unknown.MethodsUsing electrophysiology, calcium imaging, immunohistochemistry, and staining of meningeal mast cells, we studied effects of cholinergic agents on peripheral nociception in rat hemiskulls and isolated trigeminal neurons.ResultsBoth ACh and carbachol significantly increased nociceptive firing in peripheral terminals of meningeal trigeminal nerves recorded by local suction electrode. Strong nociceptive firing was also induced by nicotine, implying essential role of nicotinic AChRs in control of excitability of trigeminal nerve endings. Nociceptive firing induced by carbachol was reduced by muscarinic antagonist atropine, whereas the action of nicotine was prevented by the nicotinic blocker d-tubocurarine but was insensitive to the TRPA1 antagonist HC-300033. Carbachol but not nicotine induced massive degranulation of meningeal mast cells known to release multiple pro-nociceptive mediators. Enzymes terminating ACh action, acetylcholinesterase (AChE) and butyrylcholinesterase, were revealed in perivascular meningeal nerves. The inhibitor of AChE neostigmine did not change the firing per se but induced nociceptive activity, sensitive to d-tubocurarine, after pretreatment of meninges with the migraine mediator CGRP. This observation suggested the pro-nociceptive action of endogenous ACh in meninges. Both nicotine and carbachol induced intracellular Ca2+ transients in trigeminal neurons partially overlapping with expression of capsaicin-sensitive TRPV1 receptors.ConclusionTrigeminal nerve terminals in meninges, as well as dural mast cells and trigeminal ganglion neurons express a repertoire of pro-nociceptive nicotinic and muscarinic AChRs, which could be activated by the ACh released from parasympathetic nerves. These receptors represent a potential target for novel therapeutic interventions in trigeminal pain and probably in migraine

    Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications

    No full text
    The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains

    α7- and α9-Containing Nicotinic Acetylcholine Receptors in the Functioning of Immune System and in Pain

    No full text
    Nicotinic acetylcholine receptors (nAChRs) present as many different subtypes in the nervous and immune systems, muscles and on the cells of other organs. In the immune system, inflammation is regulated via the vagus nerve through the activation of the non-neuronal α7 nAChR subtype, affecting the production of cytokines. The analgesic properties of α7 nAChR-selective compounds are mostly based on the activation of the cholinergic anti-inflammatory pathway. The molecular mechanism of neuropathic pain relief mediated by the inhibition of α9-containing nAChRs is not fully understood yet, but the role of immune factors in this process is becoming evident. To obtain appropriate drugs, a search of selective agonists, antagonists and modulators of α7- and α9-containing nAChRs is underway. The naturally occurring three-finger snake α-neurotoxins and mammalian Ly6/uPAR proteins, as well as neurotoxic peptides α-conotoxins, are not only sophisticated tools in research on nAChRs but are also considered as potential medicines. In particular, the inhibition of the α9-containing nAChRs by α-conotoxins may be a pathway to alleviate neuropathic pain. nAChRs are involved in the inflammation processes during AIDS and other viral infections; thus they can also be means used in drug design. In this review, we discuss the role of α7- and α9-containing nAChRs in the immune processes and in pain

    Activation of α7 Nicotinic Acetylcholine Receptor Upregulates HLA-DR and Macrophage Receptors: Potential Role in Adaptive Immunity and in Preventing Immunosuppression

    No full text
    Immune response during sepsis is characterized by hyper-inflammation followed by immunosuppression. The crucial role of macrophages is well-known for both septic stages, since they are involved in immune homeostasis and inflammation, their dysfunction being implicated in immunosuppression. The cholinergic anti-inflammatory pathway mediated by macrophage α7 nicotinic acetylcholine receptor (nAChR) represents possible drug target. Although α7 nAChR activation on macrophages reduces the production of proinflammatory cytokines, the role of these receptors in immunological changes at the cellular level is not fully understood. Using α7 nAChR selective agonist PNU 282,987, we investigated the influence of α7 nAChR activation on the expression of cytokines and, for the first time, of the macrophage membrane markers: cluster of differentiation 14 (CD14), human leukocyte antigen-DR (HLA-DR), CD11b, and CD54. Application of PNU 282,987 to THP-1Mϕ (THP-1 derived macrophages) cells led to inward ion currents and Ca2+ increase in cytoplasm showing the presence of functionally active α7 nAChR. Production of cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 was estimated in classically activated macrophages (M1) and treatment with PNU 282,987 diminished IL-10 expression. α7 nAChR activation on THP-1Mϕ, THP-1M1, and monocyte-derived macrophages (MDMs) increased the expression of HLA-DR, CD54, and CD11b molecules, but decreased CD14 receptor expression, these effects being blocked by alpha (α)-bungarotoxin. Thus, PNU 282,987 enhances the macrophage-mediated immunity via α7 nAChR by regulating expression of their membrane receptors and of cytokines, both playing an important role in preventing immunosuppressive states

    Data from: Calcium imaging with genetically encoded sensor Case12: facile analysis of α7/α9 nAChR mutants

    No full text
    Elucidation of the structural basis of pharmacological differences for highly homologous α7 and α9 nicotinic acetylcholine receptors (nAChRs) may shed light on their involvement in different physiological functions and diseases. Combination of site-directed mutagenesis and electrophysiology is a powerful tool to pinpoint the key amino-acid residues in the receptor ligand-binding site, but for α7 and α9 nAChRs it is complicated by their poor expression and fast desensitization. Here, we probed the ligand-binding properties of α7/α9 nAChR mutants by a proposed simple and fast calcium imaging method. The method is based on transient co-expression of α7/α9 nAChR mutants in neuroblastoma cells together with Ric-3 or NACHO chaperones and Case12 fluorescent calcium ion sensor followed by analysis of their pharmacology using a fluorescence microscope or a fluorometric imaging plate reader (FLIPR) with a GFP filter set. The results obtained were confirmed by electrophysiology and by calcium imaging with the conventional calcium indicator Fluo-4. The affinities for acetylcholine and epibatidine were determined for human and rat α7 nAChRs, and for their mutants with homologous residues of α9 nAChR incorporated at positions 117–119, 184, 185, 187, and 189, which are anticipated to be involved in ligand binding. The strongest decrease in the affinity was observed for mutations at positions 187 and 119. The L119D mutation of α7 nAChR, showing a larger effect for epibatidine than for acetylcholine, may implicate this position in pharmacological differences between α7 and α9 nAChRs

    pdb

    No full text
    PDB file WT.pdb contains the last frame from 10 ns molecular dynamics simulation alpha7-AChBP chimera (PDB 3SQ6). Only two adjacent subunits were subjected to simulations. PDB files with names E185V, E189G, F187S, L119D, Q117T, R186I, S184N and Y118W contain the last frame from molecular dynamics simulation of alpha7-AChBP chimera with the respective mutations (residues numbered according to human alpha7 nAChR). PDB files F104.pdb and V104_mutant.pdb contain structures in which 104th residue of alpha7 AChBP chimera was changed either to phenylalanine (as in actual human alpha7 nAChR) or to valine (as in alpha9 nAChR)
    corecore