10 research outputs found

    Fungal Biotransformation of Insoluble Kraft Lignin into a Water Soluble Polymer

    No full text
    Low substrate solubility and slow decomposition/biotransformation rate are among the main impediments for industrial scale lignin biotreatment. The outcome and dynamics of kraft lignin biomodification by basidiomycetous fungi, <i>Coriolus versicolor</i>, were investigated in the presence of dimethyl sulfoxide (DMSO). The addition of 2 vol % DMSO to aqueous media increased the lignin solubility up to 70%, while the quasi-immobilized fungi (pregrown on agar containing kenaf biomass) maintained their ability to produce lignolytic enzymes. Basidiomycetous fungi were able to grow on solid media containing both 5–25 g/L lignin and up to 5 vol % DMSO, in contrast to no growth in liquid media as a free suspended culture. When a fungal culture pregrown on agar was used for lignin treatment in an aqueous medium containing 2–5% DMSO with up to 25 g/L lignin, significant lignin modification was observed in 1–6 days. The product analysis suggests that lignin was biotransformed, rather than biodegraded, into an oxygenated and cross-linked phenolic polymer. The resulting product showed the removal of phenolic monomers and/or their immediate precursors based on gas chromatography and thermal desorption–pyrolysis–gas chromatography–mass spectrometry analyses. Significant intramolecular cross-linking among the reaction products was shown by thermal carbon analysis and <sup>1</sup>H NMR spectroscopy. An increase in polarity, presumably due to oxygenation, and a decrease in polydispersity of the lignin treatment product compared to untreated lignin were observed while using liquid chromatography

    Triacylglyceride Thermal Cracking: Pathways to Cyclic Hydrocarbons

    No full text
    Thermal cracking of triacylglyceride (TG) oils results in complex mixtures, containing nearly 20% cyclic hydrocarbons, which can be further processed into middle-distillate transportation fuels and byproduct chemicals. The occurrence patterns of cyclic products obtained via the thermal cracking of several TG feedstocks, such as canola and soybean oils, as well as triolein and tristearin (conducted at 430–440 °C in the absence of catalysts under vacuum), were investigated to probe possible formation mechanisms. Detailed gas chromatographic characterization furnished full molar homology/molecular size and partial isomeric profiles for cyclopentanes, cyclopentenes, cyclohexanes, cyclohexenes, aromatics, and polycyclic aromatic hydrocarbons (PAHs). It was found that the data were inconsistent with previously proposed mechanisms involving the Diels–Alder reaction as a single pathway. An alternate mechanism was proposed and supported with experimental evidence based on the intramolecular cyclization of alkenyl and alkadienyl radicals formed as a result of TG cracking. The product homology profiles corroborate the proposed mechanism and show the depletion of medium-size alkenes coupled with the accumulation of corresponding monocyclic hydrocarbons (those with the matching number of carbon atoms). Similarly, the product mixtures were depleted of long-chain alkyl-substituted monocyclic hydrocarbons because of the formation of the corresponding PAHs as long as sufficient time is available. Entropy appears to determine the type and size of cyclic hydrocarbons formed
    corecore