11 research outputs found

    A New Variant of Charcot-Marie-Tooth Disease Type 2 Is Probably the Result of a Mutation in the Neurofilament-Light Gene

    Get PDF
    Charcot-Marie-Tooth (CMT) disease is the most common inherited motor and sensory neuropathy. The axonal form of the disease is designated as “CMT type 2” (CMT2). Although four loci known to be implicated in autosomal dominant CMT2 have been mapped thus far (on 1p35-p36, 3q13.1, 3q13-q22, and 7p14), no one causative gene is yet known. A large Russian family with CMT2 was found in the Mordovian Republic (Russia). Affected members had the typical CMT2 phenotype. Additionally, several patients suffered from hyperkeratosis, although the association, if any, between the two disorders is not clear. Linkage with the CMT loci already known (CMT1A, CMT1B, CMT2A, CMT2B, CMT2D, and a number of other CMT-related loci) was excluded. Genomewide screening pinpointed the disease locus in this family to chromosome 8p21, within a 16-cM interval between markers D8S136 and D8S1769. A maximum two-point LOD score of 5.93 was yielded by a microsatellite from the 5′ region of the neurofilament-light gene (NF-L). Neurofilament proteins play an important role in axonal structure and are implicated in several neuronal disorders. Screening of affected family members for mutations in the NF-L gene and in the tightly linked neurofilament-medium gene (NF-M) revealed the only DNA alteration linked with the disease: a A998C transversion in the first exon of NF-L, which converts a conserved Gln333 amino acid to proline. This alteration was not found in 180 normal chromosomes. Twenty unrelated CMT2 patients, as well as 26 others with an undetermined form of CMT, also were screened for mutations in NF-L, but no additional mutations were found. It is suggested that Gln333Pro represents a rare disease-causing mutation, which results in the CMT2 phenotype

    Comparison of disease phenotypes and mechanistic insight on causal variants in patients with DADA2

    No full text
    BACKGROUND: Deficiency of adenosine deaminase 2 (DADA2) results in heterogeneous manifestations including systemic vasculitis and red cell aplasia. The basis of different disease phenotypes remains incompletely defined. OBJECTIVE: We sought to further delineate disease phenotypes in DADA2 and define the mechanistic basis of ADA2 variants. METHODS: We analyzed the clinical features and ADA2 variants in 33 patients with DADA2. We compared the transcriptomic profile of 14 patients by bulk RNA sequencing. ADA2 variants were expressed experimentally to determine impact on protein production, trafficking, release, and enzymatic function. RESULTS: Transcriptomic analysis of PBMCs from DADA2 patients with the vasculitis phenotype or pure red cell aplasia phenotype exhibited similar upregulation of TNF, type I interferon, and type II interferon signaling pathways compared with healthy controls. These pathways were also activated in 3 asymptomatic individuals with DADA2. Analysis of ADA2 variants, including 7 novel variants, showed different mechanisms of functional disruption including (1) unstable transcript leading to RNA degradation; (2) impairment of ADA2 secretion because of retention in the endoplasmic reticulum; (3) normal expression and secretion of ADA2 that lacks enzymatic function; and (4) disruption of the N-terminal signal peptide leading to cytoplasmic localization of unglycosylated protein. CONCLUSIONS: Transcriptomic signatures of inflammation are observed in patients with different disease phenotypes, including some asymptomatic individuals. Disease-associated ADA2 variants affect protein function by multiple mechanisms, which may contribute to the clinical heterogeneity of DADA2

    Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A

    No full text
    We report missense mutations in the mitochondrial fusion protein mitofusin 2 (MFN2) in seven large pedigrees affected with Charcot-Marie-Tooth neuropathy type 2A (CMT2A). Although a mutation in kinesin family member 1B-beta (KIF1B) was associated with CMT2A in a single Japanese family, we found no mutations in KIF1B in these seven families. Because these families include all published pedigrees with CMT2A and are ethnically diverse, we conclude that the primary gene mutated in CMT2A is MFN2

    Corrigendum: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A (vol 36, pg 327, 2004)

    Get PDF
    We report missense mutations in the mitochondrial fusion protein mitofusin 2 (MFN2) in seven large pedigrees affected with Charcot-Marie-Tooth neuropathy type 2A (CMT2A). Although a mutation in kinesin family member 1B-beta (KIF1B) was associated with CMT2A in a single Japanese family, we found no mutations in KIF1B in these seven families. Because these families include all published pedigrees with CMT2A and are ethnically diverse, we conclude that the primary gene mutated in CMT2A is MFN2

    The clinical and genetic spectrum of 82 patients with RAG deficiency including a c.256_257delAA founder variant in Slavic countries

    Get PDF
    Background: Variants in recombination-activating genes (RAG) are common genetic causes of autosomal recessive forms of combined immunodeficiencies (CID) ranging from severe combined immunodeficiency (SCID), Omenn syndrome (OS), leaky SCID, and CID with granulomas and/or autoimmunity (CID-G/AI), and even milder presentation with antibody deficiency. Objective: We aim to estimate the incidence, clinical presentation, genetic variability, and treatment outcome with geographic distribution of patients with the RAG defects in populations inhabiting South, West, and East Slavic countries. Methods: Demographic, clinical, and laboratory data were collected from RAG-deficient patients of Slavic origin via chart review, retrospectively. Recombinase activity was determined in vitro by flow cytometry-based assay. Results: Based on the clinical and immunologic phenotype, our cohort of 82 patients from 68 families represented a wide spectrum of RAG deficiencies, including SCID (n = 20), OS (n = 37), and LS/CID (n = 25) phenotypes. Sixty-seven (81.7%) patients carried RAG1 and 15 patients (18.3%) carried RAG2 biallelic variants. We estimate that the minimal annual incidence of RAG deficiency in Slavic countries varies between 1 in 180,000 and 1 in 300,000 live births, and it may vary secondary to health care disparities in these regions. In our cohort, 70% (n = 47) of patients with RAG1 variants carried p.K86Vfs*33 (c.256_257delAA) allele, either in homozygous (n = 18, 27%) or in compound heterozygous (n = 29, 43%) form. The majority (77%) of patients with homozygous RAG1 p.K86Vfs*33 variant originated from Vistula watershed area in Central and Eastern Poland, and compound heterozygote cases were distributed among all Slavic countries except Bulgaria. Clinical and immunological presentation of homozygous RAG1 p.K86Vfs*33 cases was highly diverse (SCID, OS, and AS/CID) suggestive of strong influence of additional genetic and/or epigenetic factors in shaping the final phenotype. Conclusion: We propose that RAG1 p.K86Vfs*33 is a founder variant originating from the Vistula watershed region in Poland, which may explain a high proportion of homozygous cases from Central and Eastern Poland and the presence of the variant in all Slavs. Our studies in this cohort of RAG1 founder variants confirm that clinical and immunological phenotypes only partially depend on the underlying genetic defect. As access to HSCT is improving among RAG-deficient patients in Eastern Europe, we anticipate improvements in survival

    The Clinical and Genetic Spectrum of 82 Patients With RAG Deficiency Including a c.256_257delAA Founder Variant in Slavic Countries

    Get PDF
    Background: Variants in recombination-activating genes (RAG) are common genetic causes of autosomal recessive forms of combined immunodeficiencies (CID) ranging from severe combined immunodeficiency (SCID), Omenn syndrome (OS), leaky SCID, and CID with granulomas and/or autoimmunity (CID-G/AI), and even milder presentation with antibody deficiency. Objective: We aim to estimate the incidence, clinical presentation, genetic variability, and treatment outcome with geographic distribution of patients with the RAG defects in populations inhabiting South, West, and East Slavic countries. Methods: Demographic, clinical, and laboratory data were collected from RAG-deficient patients of Slavic origin via chart review, retrospectively. Recombinase activity was determined in vitro by flow cytometry-based assay. Results: Based on the clinical and immunologic phenotype, our cohort of 82 patients from 68 families represented a wide spectrum of RAG deficiencies, including SCID (n = 20), OS (n = 37), and LS/CID (n = 25) phenotypes. Sixty-seven (81.7%) patients carried RAG1 and 15 patients (18.3%) carried RAG2 biallelic variants. We estimate that the minimal annual incidence of RAG deficiency in Slavic countries varies between 1 in 180,000 and 1 in 300,000 live births, and it may vary secondary to health care disparities in these regions. In our cohort, 70% (n = 47) of patients with RAG1 variants carried p.K86Vfs*33 (c.256_257delAA) allele, either in homozygous (n = 18, 27%) or in compound heterozygous (n = 29, 43%) form. The majority (77%) of patients with homozygous RAG1 p.K86Vfs*33 variant originated from Vistula watershed area in Central and Eastern Poland, and compound heterozygote cases were distributed among all Slavic countries except Bulgaria. Clinical and immunological presentation of homozygous RAG1 p.K86Vfs*33 cases was highly diverse (SCID, OS, and AS/CID) suggestive of strong influence of additional genetic and/or epigenetic factors in shaping the final phenotype. Conclusion: We propose that RAG1 p.K86Vfs*33 is a founder variant originating from the Vistula watershed region in Poland, which may explain a high proportion of homozygous cases from Central and Eastern Poland and the presence of the variant in all Slavs. Our studies in this cohort of RAG1 founder variants confirm that clinical and immunological phenotypes only partially depend on the underlying genetic defect. As access to HSCT is improving among RAG-deficient patients in Eastern Europe, we anticipate improvements in survival
    corecore