15 research outputs found

    Development of Fluorescent Isocoumarin‐Fused Oxacyclononyne – 1,2,3‐Triazole Pairs

    Get PDF
    Fluorescent isocoumarin-fused cycloalkynes, which are reactive in SPAAC and give fluorescent triazoles regardless of the azide nature, have been developed. The key structural feature that converts the non-fluorescent cycloalkyne/triazole pair to its fluorescent counterpart is the pi-acceptor group (COOMe, CN) at the C6 position of the isocoumarin ring. The design of the fluorescent cycloalkyne/triazole pairs is based on the theoretical study of the S1 state deactivation mechanism of the non-fluorescent isocoumarin-fused cycloalkyne IC9O using multi-configurational ab initio and DFT methodologies. The calculations revealed that deactivation proceeds through the electrocyclic ring opening of the α-pyrone cycle and is accompanied by a redistribution of electron density in the fused benzene ring. We proposed that the S1 excited state deactivation barrier could be increased by introducing a pi-acceptor group into a position that is in direct conjugation with the formed C=O group and has a reduced electron density in the transition state. As a proof of concept, we designed and synthesized two fluorescent isocoumarin-fused cycloalkynes IC9O-COOMe and IC9O-CN bearing pi-acceptors at the C6 position. The importance of the nature of a pi-acceptor group was shown by the example of much less fluorescent CF3_3-substituted cycloalkyne IC9O-CF3_3

    4,5-Bis(arylethynyl)-1,2,3-triazoles - A New Class of Fluorescent Labels: Synthesis and Applications

    Get PDF
    Cu-catalyzed 1,3-dipolar cycloaddition of ethyl 2-azidoacetate to iodobuta-1,3-diynes and subsequent Sonogashira cross-coupling were used to synthesize a large series of new triazole-based push–pull chromophores: 4,5-bis(arylethynyl)-1H-1,2,3-triazoles. The study of their optical properties revealed that all molecules have fluorescence properties, the Stokes shift values of which exceed 150 nm. The fluorescent properties of triazoles are easily adjustable depending on the nature of the substituents attached to aryl rings of the arylethynyl moieties at the C4 and C5 atoms of the triazole core. The possibility of 4,5-bis(arylethynyl)-1,2,3-triazoles’ application for labeling was demonstrated using proteins and the HEK293 cell line. The results of an MTT test on two distinct cell lines, HEK293 and HeLa, revealed the low cytotoxicity of 4,5-bis(arylethynyl)triazoles, which makes them promising fluorescent tags for labeling and tracking biomolecules

    Synthesis and chemosensing properties of cinnoline-containing poly(arylene ethynylene)s

    No full text
    Novel poly(arylene ethynylene)s comprising a cinnoline core were prepared in high yields via a three-step methodology. A Richter-type cyclization of 2-ethynyl- and 2-(buta-1,3-diynyl)aryltriazenes was used for cinnoline ring formation, followed by a Sonogashira coupling for the introduction of trimethylsilylethynyl moieties and a sila-Sonogashira coupling as the polycondensation technique. The fluorescence of the cinnoline-containing polymers in THF was highly sensitive to quenching by Pd2+ ions

    Hyperbranched polymer immobilized palladium nanoparticles as an efficient and reusable catalyst for cyanation of aryl halides and reduction of nitroarenes

    Get PDF
    A new nitrogen-rich hyperbranched polymer comprising imidazolium and triazole moieties used for stabilization of Pd nanoparticles. The resulting new material, PolyTZ-IL@Pd NPs, was characterized with different techniques including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-Ray (EDX), and transmission electron microscopy (TEM) analysis. PolyTZ-IL@Pd NPs has been used as an efficient catalyst in the reduction of nitroarenes to amines and cyanation of aryl bromides and iodides. The catalyst showed high stability and recyclability and recycled at least 10 times in reduction of 1‑chloro-4-nitrobenzene and 5 times in cyanation of iodobenzene.The authors are grateful to the Institute for Advanced Studies in Basic Sciences (IASBS) Research Council, University of Alicante and Saint Petersburg State University. We also thankful for financial support to the Iran National Science Foundation (INSF-Grant number of 4003055), the Spanish Ministerio de Economía y Competitividad (MINECO) (projects CTQ2013–43446-P and CTQ2014–51912-REDC), the Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER, EU) (projects CTQ2016–76782-P and CTQ2016–81797-REDC), the Generalitat Valenciana (PROMETEOII/2014/017) and the University of Alicante

    Polystyrene-Supported Acyclic Diaminocarbene Palladium Complexes in Sonogashira Cross-Coupling: Stability vs. Catalytic Activity

    No full text
    Two types of immobilized on the amino-functionalized polystyrene-supported acyclic diaminocarbene palladium complexes (ADC-PdII) are investigated under Sonogashira cross-coupling conditions. Depending on substituents in the diaminocarbene fragment immobilized ADC-PdII, systems are found to have different catalytic activity and stability regarding Pd-leaching. PdII-diaminocarbenes possessing protons at both nitrogen atoms smoothly decompose into Pd0-containing species providing a catalytic “cocktail system” with high activity and ability to reuse within nine runs. Polymer-supported palladium (II) complex bearing NBn–Ccarbene–NH-moiety exhibits greater stability while noticeably lower activity under Sonogashira cross-coupling. Four molecular ADC-PdII complexes are also synthesized and investigated with the aim of confirming proposed base-promoted pathway of ADC-PdII conversion through carbodiimide into an active Pd0 forms

    4-Azidocinnoline—Cinnoline-4-amine Pair as a New Fluorogenic and Fluorochromic Environment-Sensitive Probe

    No full text
    A new type of fluorogenic and fluorochromic probe based on the reduction of weakly fluorescent 4-azido-6-(4-cyanophenyl)cinnoline to the corresponding fluorescent cinnoline-4-amine was developed. We found that the fluorescence of 6-(4-cyanophenyl)cinnoline-4-amine is strongly affected by the nature of the solvent. The fluorogenic effect for the amine was detected in polar solvents with the strongest fluorescence increase in water. The environment-sensitive fluorogenic properties of cinnoline-4-amine in water were explained as a combination of two types of fluorescence mechanisms: aggregation-induced emission (AIE) and excited state intermolecular proton transfer (ESPT). The suitability of an azide–amine pair as a fluorogenic probe was tested using a HepG2 hepatic cancer cell line with detection by fluorescent microscopy, flow cytometry, and HPLC analysis of cells lysates. The results obtained confirm the possibility of the transformation of the azide to amine in cells and the potential applicability of the discovered fluorogenic and fluorochromic probe for different analytical and biological applications in aqueous medium

    Functionalized 10-Membered Aza- and Oxaenediynes through the Nicholas Reaction

    No full text
    The scope and limitations of the Nicholas-type cyclization for the synthesis of 10-membered benzothiophene-fused heterocyclic enediynes with different functionalities were investigated. Although the Nicholas cyclization through oxygen could be carried out in the presence of an ester group, the final oxaenediyne was unstable under storage. Among the N-type Nicholas reactions, cyclization via an arenesulfonamide functional group followed by mild Co-deprotection was found to be the most promising, yielding 10-membered azaendiynes in high overall yields. By contrast, the Nicholas cyclization through the acylated nitrogen atom did not give the desired 10-membered cycle. It resulted in the formation of a pyrroline ring, whereas cyclization via an alkylated amino group resulted in a poor yield of the target 10-membered enediyne. The acylated 4-aminobenzenesulfonamide nucleophilic group was found to be the most convenient for the synthesis of functionalized 10-membered enediynes bearing a clickable function, such as a terminal triple bond. All the synthesized cyclic enediynes exhibited moderate activity against lung carcinoma NCI-H460 cells and had a minimal effect on lung epithelial-like WI-26 VA4 cells and are therefore promising compounds in the search for novel antitumor agents that can be converted into conjugates with tumor-targeting ligands

    4,5-Bis(arylethynyl)-1,2,3-triazoles—A New Class of Fluorescent Labels: Synthesis and Applications

    No full text
    Cu-catalyzed 1,3-dipolar cycloaddition of ethyl 2-azidoacetate to iodobuta-1,3-diynes and subsequent Sonogashira cross-coupling were used to synthesize a large series of new triazole-based push–pull chromophores: 4,5-bis(arylethynyl)-1H-1,2,3-triazoles. The study of their optical properties revealed that all molecules have fluorescence properties, the Stokes shift values of which exceed 150 nm. The fluorescent properties of triazoles are easily adjustable depending on the nature of the substituents attached to aryl rings of the arylethynyl moieties at the C4 and C5 atoms of the triazole core. The possibility of 4,5-bis(arylethynyl)-1,2,3-triazoles’ application for labeling was demonstrated using proteins and the HEK293 cell line. The results of an MTT test on two distinct cell lines, HEK293 and HeLa, revealed the low cytotoxicity of 4,5-bis(arylethynyl)triazoles, which makes them promising fluorescent tags for labeling and tracking biomolecules
    corecore