25 research outputs found

    Riemann-Symmetric-Space-Based Models in Screening for Gene Transfer Polymers

    No full text
    Today, gene transfer using polymers as transfer vectors is hardly studied. Some polymers have an excellent gene-carrying ability, but their cytotoxic and biocompatibility properties are not suitable for use. Thus, increased insight into the drug space of such structures is needed in the screening for suitable molecules. This study aimed to introduce a mathematical model of polymers suitable for genes transfer. In this regard, Riemann surfaces were used. The concerned polymers were taken from secondary published experimental data. The results show that symmetric Reimann spaces are suitable for further drug screening. The branch point values of Riemann surfaces are especially increased for the polymers suitable in gene transfer

    Nanocomposites as biomolecules delivery agents in nanomedicine

    No full text
    Abstract Nanoparticles (NPs) are atomic clusters of crystalline or amorphous structure that possess unique physical and chemical properties associated with a size range of between 1 and 100 nm. Their nano-sized dimensions, which are in the same range as those of vital biomolecules, such as antibodies, membrane receptors, nucleic acids, and proteins, allow them to interact with different structures within living organisms. Because of these features, numerous nanoparticles are used in medicine as delivery agents for biomolecules. However, off-target drug delivery can cause serious side effects to normal tissues and organs. Considering this issue, it is essential to develop bioengineering strategies to significantly reduce systemic toxicity and improve therapeutic effect. In contrast to passive delivery, nanosystems enable to obtain enhanced therapeutic efficacy, decrease the possibility of drug resistance, and reduce side effects of “conventional” therapy in cancers. The present review provides an overview of the most recent (mostly last 3 years) achievements related to different biomolecules used to enable targeting capabilities of highly diverse nanoparticles. These include monoclonal antibodies, receptor-specific peptides or proteins, deoxyribonucleic acids, ribonucleic acids, [DNA/RNA] aptamers, and small molecules such as folates, and even vitamins or carbohydrates

    MR Imaging of Pulmonary Nodules: Detection Rate and Accuracy of Size Estimation in Comparison to Computed Tomography

    No full text
    <div><p>Objective</p><p>The aims of this study were to assess the sensitivity of various magnetic resonance imaging (MRI) sequences for the diagnosis of pulmonary nodules and to estimate the accuracy of MRI for the measurement of lesion size, as compared to computed tomography (CT).</p><p>Methods</p><p>Fifty patients with 113 pulmonary nodules diagnosed by CT underwent lung MRI and CT. MRI studies were performed on 1.5T scanner using the following sequences: T2-TSE, T2-SPIR, T2-STIR, T2-HASTE, T1-VIBE, and T1-out-of-phase. CT and MRI data were analyzed independently by two radiologists.</p><p>Results</p><p>The overall sensitivity of MRI for the detection of pulmonary nodules was 80.5% and according to nodule size: 57.1% for nodules ≤4mm, 75% for nodules >4-6mm, 87.5% for nodules >6-8mm and 100% for nodules >8mm. MRI sequences yielded following sensitivities: 69% (T1-VIBE), 54.9% (T2-SPIR), 48.7% (T2-TSE), 48.7% (T1-out-of-phase), 45.1% (T2-STIR), 25.7% (T2-HASTE), respectively. There was very strong agreement between the maximum diameter of pulmonary nodules measured by CT and MRI (mean difference -0.02 mm; 95% CI –1.6–1.57 mm; Bland-Altman analysis).</p><p>Conclusions</p><p>MRI yielded high sensitivity for the detection of pulmonary nodules and enabled accurate assessment of their diameter. Therefore it may be considered an alternative to CT for follow-up of some lung lesions. However, due to significant number of false positive diagnoses, it is not ready to replace CT as a tool for lung nodule detection.</p></div

    Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase

    No full text
    Glucose oxidase (GOx) is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state) to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H2O2). GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI). The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD) study of the PEI ligand (C14N8_07_B22) and the GOx enzyme (3QVR) was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1) of −5.8 kcal/mol and (LIG2) of −4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1) and on its surface (LIG2) were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase

    Tracking of Glycans Structure and Metallomics Profiles in BRAF Mutated Melanoma Cells Treated with Vemurafenib

    No full text
    Nearly half of patients with advanced and metastatic melanomas harbor a BRAF mutation. Vemurafenib (VEM), a BRAF inhibitor, is used to treat such patients, however, responses to VEM are very short-lived due to intrinsic, adaptive and/or acquired resistance. In this context, we present the action of the B-Raf serine-threonine protein kinase inhibitor (vemurafenib) on the glycans structure and metallomics profiles in melanoma cells without (MeWo) and with (G-361) BRAF mutations. The studies were performed using &alpha;1-acid glycoprotein (AGP), a well-known acute-phase protein, and concanavalin A (Con A), which served as the model receptor. The detection of changes in the structure of glycans can be successfully carried out based on the frequency shifts and the charge transfer resistance after interaction of AGP with Con A in different VEM treatments using QCM-D and EIS measurements. These changes were also proved based on the cell ultrastructure examined by TEM and SEM. The LA-ICP-MS studies provided details on the metallomics profile in melanoma cells treated with and without VEM. The studies evidence that vemurafenib modifies the glycans structures and metallomics profile in melanoma cells harboring BRAF mutation that can be further implied in the resistance phenomenon. Therefore, our data opens a new avenue for further studies in the short-term addressing novel targets that hopefully can be used to improve the therapeutic regiment in advanced melanoma patients. The innovating potential of this study is fully credible and has a real impact on the global patient society suffering from advanced and metastatic melanomas

    The incidence of the most frequent type II lesions in two age groups.

    No full text
    <p>* χ<sup>2</sup> test was applied to compare the differences in the incidence of abnormalities.</p><p>The incidence of the most frequent type II lesions in two age groups.</p
    corecore