3 research outputs found

    PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis

    Full text link
    [EN] Permeability is a crucial trait that affects seed longevity and is regulated by different polymers including proanthocyanidins, suberin, cutin and lignin located in the seed coat. By testing mutants in suberin transport and biosynthesis, we demonstrate the importance of this biopolymer to cope with seed deterioration. Transcriptomic analysis of cog1-2D, a gain-of-function mutant with increased seed longevity, revealed the upregulation of several peroxidase genes. Reverse genetics analysing seed longevity uncovered redundancy within the seed coat peroxidase gene family; however, after controlled deterioration treatment, seeds from the prx2 prx25 double and prx2 prx25 prx71 triple mutant plants presented lower germination than wild-type plants. Transmission electron microscopy analysis of the seed coat of these mutants showed a thinner palisade layer, but no changes were observed in proanthocyanidin accumulation or in the cuticle layer. Spectrophotometric quantification of acetyl bromide-soluble lignin components indicated changes in the amount of total polyphenolics derived from suberin and/or lignin in the mutant seeds. Finally, the increased seed coat permeability to tetrazolium salts observed in the prx2 prx25 and prx2 prx25 prx71 mutant lines suggested that the lower permeability of the seed coats caused by altered polyphenolics is likely to be the main reason explaining their reduced seed longevityRenard, J.; Martínez-Almonacid, I.; Sonntag, A.; Molina, I.; Moya-Cuevas, J.; Bissoli, G.; Muñoz-Bertomeu, J.... (2020). PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. Plant Cell & Environment. 43(2):315-326. https://doi.org/10.1111/pce.13656S315326432Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A., & Pedreño, M. A. (2008). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60(2), 377-390. doi:10.1093/jxb/ern277Bailly, C., El-Maarouf-Bouteau, H., & Corbineau, F. (2008). From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies, 331(10), 806-814. doi:10.1016/j.crvi.2008.07.022Beisson, F., Li, Y., Bonaventure, G., Pollard, M., & Ohlrogge, J. B. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. The Plant Cell, 19(1), 351-368. doi:10.1105/tpc.106.048033Belmonte, M. F., Kirkbride, R. C., Stone, S. L., Pelletier, J. M., Bui, A. Q., Yeung, E. C., … Harada, J. J. (2013). Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proceedings of the National Academy of Sciences, 110(5), E435-E444. doi:10.1073/pnas.1222061110Bernards, M. A. (2002). Demystifying suberin. Canadian Journal of Botany, 80(3), 227-240. doi:10.1139/b02-017Bernards, M. A., Summerhurst, D. K., & Razem, F. A. (2004). Oxidases, peroxidases and hydrogen peroxide: The suberin connection. Phytochemistry Reviews, 3(1-2), 113-126. doi:10.1023/b:phyt.0000047810.10706.46Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170Bueso, E., Muñoz-Bertomeu, J., Campos, F., Brunaud, V., Martínez, L., Sayas, E., … Serrano, R. (2013). ARABIDOPSIS THALIANA HOMEOBOX25 Uncovers a Role for Gibberellins in Seed Longevity. Plant Physiology, 164(2), 999-1010. doi:10.1104/pp.113.232223Châtelain, E., Satour, P., Laugier, E., Ly Vu, B., Payet, N., Rey, P., & Montrichard, F. (2013). Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proceedings of the National Academy of Sciences, 110(9), 3633-3638. doi:10.1073/pnas.1220589110Clerkx, E. J. M., Blankestijn-De Vries, H., Ruys, G. J., Groot, S. P. C., & Koornneef, M. (2004). Genetic differences in seed longevity of various Arabidopsis mutants. Physiologia Plantarum, 121(3), 448-461. doi:10.1111/j.0031-9317.2004.00339.xCosio, C., & Dunand, C. (2009). Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 60(2), 391-408. doi:10.1093/jxb/ern318Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743Debeaujon, I., Léon-Kloosterziel, K. M., & Koornneef, M. (2000). Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiology, 122(2), 403-414. doi:10.1104/pp.122.2.403Duroux, L., & Welinder, K. G. (2003). The Peroxidase Gene Family in Plants: A Phylogenetic Overview. Journal of Molecular Evolution, 57(4), 397-407. doi:10.1007/s00239-003-2489-3Fedi, F., O’Neill, C. M., Menard, G., Trick, M., Dechirico, S., Corbineau, F., … Penfield, S. (2017). Awake1, an ABC-Type Transporter, Reveals an Essential Role for Suberin in the Control of Seed Dormancy. Plant Physiology, 174(1), 276-283. doi:10.1104/pp.16.01556Francoz, E., Ranocha, P., Nguyen-Kim, H., Jamet, E., Burlat, V., & Dunand, C. (2015). Roles of cell wall peroxidases in plant development. Phytochemistry, 112, 15-21. doi:10.1016/j.phytochem.2014.07.020Franke, R., Briesen, I., Wojciechowski, T., Faust, A., Yephremov, A., Nawrath, C., & Schreiber, L. (2005). Apoplastic polyesters in Arabidopsis surface tissues – A typical suberin and a particular cutin. Phytochemistry, 66(22), 2643-2658. doi:10.1016/j.phytochem.2005.09.027Franke, R., & Schreiber, L. (2007). Suberin — a biopolyester forming apoplastic plant interfaces. Current Opinion in Plant Biology, 10(3), 252-259. doi:10.1016/j.pbi.2007.04.004GoffL TrapnellC&KelleyD(2014)CummeRbund: Analysis exploration manipulation and visualization of Cufflinks high‐throughput sequencing data. R package version 2.22.0.Gou, M., Hou, G., Yang, H., Zhang, X., Cai, Y., Kai, G., & Liu, C.-J. (2016). The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis. Plant Physiology, 173(2), 1045-1058. doi:10.1104/pp.16.01614Graça, J. (2015). Suberin: the biopolyester at the frontier of plants. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00062Haughn, G., & Chaudhury, A. (2005). Genetic analysis of seed coat development in Arabidopsis. Trends in Plant Science, 10(10), 472-477. doi:10.1016/j.tplants.2005.08.005Herrero, J., Fernández-Pérez, F., Yebra, T., Novo-Uzal, E., Pomar, F., Pedreño, M. Á., … Zapata, J. M. (2013). Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta, 237(6), 1599-1612. doi:10.1007/s00425-013-1865-5Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. doi:10.1038/nmeth.3317Kosma, D. K., Murmu, J., Razeq, F. M., Santos, P., Bourgault, R., Molina, I., & Rowland, O. (2014). At MYB 41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. The Plant Journal, 80(2), 216-229. doi:10.1111/tpj.12624Kunieda, T., Shimada, T., Kondo, M., Nishimura, M., Nishitani, K., & Hara-Nishimura, I. (2013). Spatiotemporal Secretion of PEROXIDASE36 Is Required for Seed Coat Mucilage Extrusion in Arabidopsis  . The Plant Cell, 25(4), 1355-1367. doi:10.1105/tpc.113.110072Lee, Y., Rubio, M. C., Alassimone, J., & Geldner, N. (2013). A Mechanism for Localized Lignin Deposition in the Endodermis. Cell, 153(2), 402-412. doi:10.1016/j.cell.2013.02.045Liang, M., Davis, E., Gardner, D., Cai, X., & Wu, Y. (2006). Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 224(5), 1185-1196. doi:10.1007/s00425-006-0300-6Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M. X., Arondel, V., Bates, P. D., … Ohlrogge, J. (2013). Acyl-Lipid Metabolism. The Arabidopsis Book, 11, e0161. doi:10.1199/tab.0161Mandel, T., Candela, H., Landau, U., Asis, L., Zilinger, E., Carles, C. C., & Williams, L. E. (2016). Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development. doi:10.1242/dev.129973Milne, I., Stephen, G., Bayer, M., Cock, P. J. A., Pritchard, L., Cardle, L., … Marshall, D. (2012). Using Tablet for visual exploration of second-generation sequencing data. Briefings in Bioinformatics, 14(2), 193-202. doi:10.1093/bib/bbs012Molina, I., Bonaventure, G., Ohlrogge, J., & Pollard, M. (2006). The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry, 67(23), 2597-2610. doi:10.1016/j.phytochem.2006.09.011Molina, I., Ohlrogge, J. B., & Pollard, M. (2007). Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. The Plant Journal, 53(3), 437-449. doi:10.1111/j.1365-313x.2007.03348.xMoreira‐Vilar F C. Siqueira‐Soares R deC Finger‐Teixeira A. Oliveira de D. M. Ferro AP Rocha daG J. Ferrarese M deLL Santos dosW. D. Ferrarese‐Filho O(2014).The Acetyl Bromide Method Is Faster Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS ONE 9:e110000.https://doi.org/10.1371/journal.pone.0110000Oñate-Sánchez, L., & Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1(1), 93. doi:10.1186/1756-0500-1-93Østergaard, L., Teilum, K., Mirza, O., Mattsson, O., Petersen, M., Welinder, K. G., … Henriksen, A. (2000). Plant Molecular Biology, 44(2), 231-243. doi:10.1023/a:1006442618860Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45e-45. doi:10.1093/nar/29.9.e45Passardi, F., Longet, D., Penel, C., & Dunand, C. (2004). The class III peroxidase multigenic family in rice and its evolution in land plants☆☆☆. Phytochemistry, 65(13), 1879-1893. doi:10.1016/j.phytochem.2004.06.023Pedreira, J., Herrera, M. T., Zarra, I., & Revilla, G. (2010). The overexpression of AtPrx37, an apoplastic peroxidase, reduces growth in Arabidopsis. Physiologia Plantarum, 141(2), 177-187. doi:10.1111/j.1399-3054.2010.01427.xPollard, M., Beisson, F., Li, Y., & Ohlrogge, J. B. (2008). Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science, 13(5), 236-246. doi:10.1016/j.tplants.2008.03.003Quiroga, M., Guerrero, C., Botella, M. A., Barceló, A., Amaya, I., Medina, M. I., … Valpuesta, V. (2000). A Tomato Peroxidase Involved in the Synthesis of Lignin and Suberin. Plant Physiology, 122(4), 1119-1128. doi:10.1104/pp.122.4.1119Rains, M. K., Gardiyehewa de Silva, N. D., & Molina, I. (2017). Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. Tree Physiology, 38(3), 340-361. doi:10.1093/treephys/tpx060Russell, W. R., Burkitt, M. J., Scobbie, L., & Chesson, A. (2005). EPR Investigation into the Effects of Substrate Structure on Peroxidase-Catalyzed Phenylpropanoid Oxidation. Biomacromolecules, 7(1), 268-273. doi:10.1021/bm050636oSano, N., Rajjou, L., North, H. M., Debeaujon, I., Marion-Poll, A., & Seo, M. (2015). Staying Alive: Molecular Aspects of Seed Longevity. Plant and Cell Physiology, 57(4), 660-674. doi:10.1093/pcp/pcv186Shigeto, J., Itoh, Y., Hirao, S., Ohira, K., Fujita, K., & Tsutsumi, Y. (2015). Simultaneously disrupting AtPrx2 , AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. Journal of Integrative Plant Biology, 57(4), 349-356. doi:10.1111/jipb.12334Shigeto, J., Kiyonaga, Y., Fujita, K., Kondo, R., & Tsutsumi, Y. (2013). Putative Cationic Cell-Wall-Bound Peroxidase Homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, Are Involved in Lignification. Journal of Agricultural and Food Chemistry, 61(16), 3781-3788. doi:10.1021/jf400426gSoliday, C. L., Dean, B. B., & Kolattukudy, P. E. (1978). Suberization: Inhibition by Washing and Stimulation by Abscisic Acid in Potato Disks and Tissue Culture. Plant Physiology, 61(2), 170-174. doi:10.1104/pp.61.2.170Tobimatsu, Y., Chen, F., Nakashima, J., Escamilla-Trevino, L. L., Jackson, L., Dixon, R. A., & Ralph, J. (2013). Coexistence but Independent Biosynthesis of Catechyl and Guaiacyl/Syringyl Lignin Polymers in Seed Coats. The Plant Cell, 25(7), 2587-2600. doi:10.1105/tpc.113.113142Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L., & Pachter, L. (2012). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology, 31(1), 46-53. doi:10.1038/nbt.2450Vishwanath, S. J., Delude, C., Domergue, F., & Rowland, O. (2014). Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Reports, 34(4), 573-586. doi:10.1007/s00299-014-1727-zVishwanath, S. J., Kosma, D. K., Pulsifer, I. P., Scandola, S., Pascal, S., Joubès, J., … Domergue, F. (2013). Suberin-Associated Fatty Alcohols in Arabidopsis: Distributions in Roots and Contributions to Seed Coat Barrier Properties  . Plant Physiology, 163(3), 1118-1132. doi:10.1104/pp.113.224410Vogt, T. (2010). Phenylpropanoid Biosynthesis. Molecular Plant, 3(1), 2-20. doi:10.1093/mp/ssp106Wang, G.-L., Que, F., Xu, Z.-S., Wang, F., & Xiong, A.-S. (2016). Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Protoplasma, 254(2), 839-848. doi:10.1007/s00709-016-0995-6Yadav, V., Molina, I., Ranathunge, K., Castillo, I. Q., Rothstein, S. J., & Reed, J. W. (2014). ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in Arabidopsis    . The Plant Cell, 26(9), 3569-3588. doi:10.1105/tpc.114.129049Zieslin, N., & Ben-Zaken, R. (1992). Effects of applied auxin, gibberellin and cytokinin on the activity of peroxidases in the peduncles of rose flowers. Plant Growth Regulation, 11(1), 53-57. doi:10.1007/bf0002443

    Identification of novel seed longevity genes related to oxidative stress and seed coat by genome wide association studies and reverse genetics

    Full text link
    [EN] Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant,Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome-wide analysis, using publicly available single-nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1,SSLEA,SSTPR,DHAR1,CYP86A8,MYB47andSPCH) and five negative ones (RBOHD,RBOHE,RBOHF,KNAT7andSEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed-longevity in knock-out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P-450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing.Ministerio de Ciencia, Innovacion y Universidades, Grant/Award Number: BIO2017-88898-PRenard, J.; Niñoles Rodenes, R.; Martínez-Almonacid, I.; Gayubas, B.; Mateos-Fernández, R.; Bissoli, G.; Bueso Rodenas, E.... (2020). Identification of novel seed longevity genes related to oxidative stress and seed coat by genome wide association studies and reverse genetics. Plant Cell & Environment. 43(10):2523-2539. https://doi.org/10.1111/pce.13822S25232539431

    Heterozygous and Homozygous Variants in SORL1 Gene in Alzheimer's Disease Patients: Clinical, Neuroimaging and Neuropathological Findings

    Get PDF
    In the last few years, the SORL1 gene has been strongly implicated in the development of Alzheimer’s disease (AD). We performed whole-exome sequencing on 37 patients with early-onset dementia or family history suggestive of autosomal dominant dementia. Data analysis was based on a custom panel that included 46 genes related to AD and dementia. SORL1 variants were present in a high proportion of patients with candidate variants (15%, 3/20). We expand the clinical manifestations associated with the SORL1 gene by reporting detailed clinical and neuroimaging findings of six unrelated patients with AD and SORL1 mutations. We also present for the first time a patient with the homozygous truncating variant c.364C>T (p.R122*) in SORL1, who also had severe cerebral amyloid angiopathy. Furthermore, we report neuropathological findings and immunochemistry assays from one patient with the splicing variant c.4519+5G>A in the SORL1 gene, in which AD was confirmed by neuropathological examination. Our results highlight the heterogeneity of clinical presentation and familial dementia background of SORL1-associated AD and suggest that SORL1 might be contributing to AD development as a risk factor gene rather than as a major autosomal dominant gene.This work was supported by the Instituto de Salud Carlos III (PI17/01067) and AGAUR from the Autonomous Catalan Government (2017SGR1134). Dr. Víctor Antonio Blanco-Palmero is supported by the Instituto de Salud Carlos III (ISCIII, Spanish Biomedical Research Institute) through a “Río Hortega” contract (CM18/0095). Dr. Sara Llamas-Velasco is supported by the Instituto de Salud Carlos III (ISCIII; Spanish Biomedical Research Institute) through a “Juan Rodés” contract (JR 18/00046).S
    corecore