38 research outputs found

    Depth Profile of Optically Recorded Patterns in Light-Sensitive Liquid Crystal Elastomers

    Full text link
    We investigated nonlinear absorption and photobleaching processes in a liquid crystal elastomer (LCE) doped with light-sensitive azobenzene moiety. A conventional one-dimensional holographic grating was recorded in the material with the use of two crossed UV laser beams and the angular dependence of the diffraction efficiency in the vicinity of the Bragg peak was analyzed. These measurements gave information on the depth to which trans to cis isomerisation had progressed into the sample as a function of the UV irradiation time. Using a numerical model that takes into account the propagation of writing beams and rate equations for the local concentration of the absorbing trans conformer, we computed the expected spatial distribution of the trans and cis conformers and the shape of the corresponding Bragg diffraction peak for different irradiation doses. Due to residual absorption of the cis conformers the depth of the recording progresses logarithmically with time and is limited by the thermal relaxation from the cis to trans conformation.Comment: 19 pages (incl. figs), 6 figure

    Light-induced dynamics of liquid-crystalline droplets on the surface of iron-doped lithium niobate crystals

    Full text link
    We investigated the effect of a photovoltaic field generated on the surface of iron-doped lithium niobate crystals on droplets of a ferroelectric nematic liquid crystalline and a standard nematic liquid crystalline material deposited on this surface. When such assembly is illuminated with a laser beam, a wide range of dynamic phenomena are initiated. Droplets located outside the laser spot are dragged in the direction of the illuminated area, while droplets located inside the illuminated region tend to bridge each other and rearrange into tendril-like structures. In the ferroelectric nematic phase (NF) these processes take place via the formation of conical spikes evolving into jet streams, similar to the behavior of droplets of conventional dielectric liquids exposed to overcritical electric fields. However, in contrast to conventional liquids, the jet streams of the NF phase exhibit profound branching. In the nematic phase (N) of both the ferroelectric nematic and the standard nematic material, dynamic processes occur via smooth-edged continuous features typical for conventional liquids subjected to under-critical fields. The difference in dynamic behavior is attributed to the large increase of dielectric permittivity in the ferroelectric nematic phase with respect to the dielectric permittivity of the nematic phase.Comment: 11 pages, 9 figure

    Effect of Base Sequence on G-Wire Formation in Solution

    Get PDF
    The formation and dimensions of G-wires by different short G-rich DNA sequences in solution were investigated by dynamic light scattering (DLS) and polyacrilamide gel electrophoresis (PAGE). To explore the basic principles of wire formation, we studied the effects of base sequence, method of preparation, temperature, and oligonucleotide concentration. Both DLS and PAGE show that thermal annealing induces much less macromolecular self-assembly than dialysis. The degree of assembly and consequently length of G-wires (5-6 nm) are well resolved by both methods for DNA sequences with intermediate length, while some discrepancies appear for the shortest and longest sequences. As expected, the longest DNA sequence gives the longest macromolecular aggregates with a length of about 11 nm as estimated by DLS. The quadruplex topologies show no concentration dependence in the investigated DNA concentration range (0.1 mM–0.4 mM) and no structural change upon heating

    Peculiar behaviour of optical polarization gratings in light-sensitive liquid crystalline elastomers

    Get PDF
    The angular dependence of the diffraction efficiency of volumetype holographic gratings recorded in a single-domain light-sensitive liquid crystalline elastomer was investigated. Usually this dependence is expected to be very similar for intensity gratings and for polarization gratings. However, our measurements resolved a profound difference between the two types of the gratings: a typical Bragg peak of the diffraction efficiency is observed only for intensity gratings, while polarization gratings exhibit a profound dip at the Bragg angle. The appearance of this dip is explained by strongly anisotropic optical absorption of the actinic light during the recording process

    Electrically Tuneable Optical Diffraction Gratings Based on a Polymer Scaffold Filled with a Nematic Liquid Crystal

    No full text
    We present an experimental and theoretical investigation of the optical diffractive properties of electrically tuneable optical transmission gratings assembled as stacks of periodic slices from a conventional nematic liquid crystal (E7) and a standard photoresist polymer (SU-8). The external electric field causes a twist-type reorientation of the LC molecules toward a perpendicular direction with respect to initial orientation. The associated field-induced modification of the director field is determined numerically and analytically by minimization of the Landau–de Gennes free energy. The optical diffraction properties of the associated periodically modulated structure are calculated numerically on the basis of rigorous coupled-wave analysis (RCWA). A comparison of experimental and theoretical results suggests that polymer slices provoke planar surface anchoring of the LC molecules with the inhomogeneous surface anchoring energy varying in the range 5–20 μJ/m2. The investigated structures provide a versatile approach to fabricating LC-polymer-based electrically tuneable diffractive optical elements (DOEs)

    Electrically tuneable optical diffraction gratings based on a polymer scaffold filled with a nematic liquid crystal

    Full text link
    We present an experimental and theoretical investigation of the optical diffractive properties of electrically tuneable optical transmission gratings assembled as stacks of periodic slices from a conventional nematic liquid crystal (E7) and a standard photoresist polymer (SU-8). The external electric field causes a twist-type reorientation of the LC molecules toward a perpendicular direction with respect to initial orientation. The associated field-induced modification of the director field is determined numerically and analytically by minimization of the Landau–de Gennes free energy. The optical diffraction properties of the associated periodically modulated structure are calculated numerically on the basis of rigorous coupled-wave analysis (RCWA). A comparison of experimental and theoretical results suggests that polymer slices provoke planar surface anchoring of the LC molecules with the inhomogeneous surface anchoring energy varying in the range 5–20 µJ/m2^2. The investigated structures provide a versatile approach to fabricating LC-polymer-based electrically tuneable diffractive optical elements (DOEs)
    corecore