69 research outputs found

    Verbal Learning and Memory in Cannabis and Alcohol Users: An Event-Related Potential Investigation

    Get PDF
    Aims: Long-term heavy use of cannabis and alcohol are known to be associated withmemory impairments. In this study, we used event-related potentials to examine verballearning and memory processing in a commonly used behavioral task.Method: We conducted two studies: first, a small pilot study of adolescent males,comprising 13 Drug-Naive Controls (DNC), 12 heavy drinkers (HD) and 8 cannabis users(CU). Second, a larger study of young adults, comprising 45 DNC (20 female), 39 HD (16female), and 20 CU (9 female). In both studies, participants completed a modified verballearning task (the Rey Auditory Verbal Learning Test, RAVLT) while brain electrical activitywas recorded. ERPs were calculated for words which were subsequently rememberedvs. those which were not remembered, and for presentations of learnt words, previouslyseen words, and new words in a subsequent recognition test. Pre-planned principalcomponents analyses (PCA) were used to quantify the ERP components in these recalland recognition phases separately for each study.Results: Memory performance overall was slightly lower than published norms usingthe standardized RAVLT delivery, but was generally similar and showed the expectedchanges over trials. Few differences in performance were observed between groups; anotable exception was markedly poorer delayed recall in HD relative to DNC (Study 2).PCA identified components expected from prior research using other memory tasks. Atencoding, there were no between-group differences in the usual P2 recall effect (larger forrecalled than not-recalled words). However, alcohol-related differences were observed ina larger P540 (indexing recollection) in HD than DNC, and cannabis-related differenceswere observed in a smaller N340 (indexing familiarity) and a lack of previously seen > newwords effect for P540 in Study 2.Conclusions: This study is the first examination of ERPs in the RAVLT in healthycontrol participants, as well as substance-using individuals, and represents an importantadvance in methodology. The results indicate alterations in recognition memoryprocessing, which even if not manifesting in overt behavioral impairment, underline thepotential for brain dysfunction with early exposure to alcohol and cannabis

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Mitragynine Attenuates Withdrawal Syndrome in Morphine-Withdrawn Zebrafish

    Get PDF
    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway

    Global analysis of DNA methylation in early-stage liver fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver fibrosis is caused by chemicals or viral infection. The progression of liver fibrosis results in hepatocellular carcinogenesis in later stages. Recent studies have revealed the importance of DNA hypermethylation in the progression of liver fibrosis to hepatocellular carcinoma (HCC). However, the importance of DNA methylation in the early-stage liver fibrosis remains unclear.</p> <p>Methods</p> <p>To address this issue, we used a pathological mouse model of early-stage liver fibrosis that was induced by treatment with carbon tetrachloride (CCl<sub>4</sub>) for 2 weeks and performed a genome-wide analysis of DNA methylation status. This global analysis of DNA methylation was performed using a combination of methyl-binding protein (MBP)-based high throughput sequencing (MBP-seq) and bioinformatic tools, IPA and Oncomine. To confirm functional aspect of MBP-seq data, we complementary used biochemical methods, such as bisulfite modification and <it>in-vitro</it>-methylation assays.</p> <p>Results</p> <p>The genome-wide analysis revealed that DNA methylation status was reduced throughout the genome because of CCl<sub>4 </sub>treatment in the early-stage liver fibrosis. Bioinformatic and biochemical analyses revealed that a gene associated with fibrosis, <it>secreted phosphoprotein 1 </it>(<it>Spp1</it>), which induces inflammation, was hypomethylated and its expression was up-regulated. These results suggest that DNA hypomethylation of the genes responsible for fibrosis may precede the onset of liver fibrosis. Moreover, <it>Spp1 </it>is also known to enhance tumor development. Using the web-based database, we revealed that <it>Spp1 </it>expression is increased in HCC.</p> <p>Conclusions</p> <p>Our study suggests that hypomethylation is crucial for the onset of and in the progression of liver fibrosis to HCC. The elucidation of this change in methylation status from the onset of fibrosis and subsequent progression to HCC may lead to a new clinical diagnosis.</p

    Insulin-like growth factor binding protein 5 enhances survival of LX2 human hepatic stellate cells

    Get PDF
    ABSTRACT: BACKGROUND: Expression of insulin-like growth factor binding protein 5 (IGFBP5) is strongly induced upon activation of hepatic stellate cells and their transdifferentiation into myofibroblasts in vitro. This was confirmed in vivo in an animal model of liver fibrosis. Since IGFBP5 has been shown to promote fibrosis in other tissues, the aim of this study was to investigate its role in the progression of liver fibrosis. METHODS: The effect of IGFBP5 was studied in LX2 cells, a model for partially activated hepatic stellate cells, and in human primary liver myofibroblasts. IGFBP5 signalling was modulated by the addition of recombinant protein, by lentiviral overexpression, and by siRNA mediated silencing. Furthermore, the addition of IGF1 and silencing of the IGF1R was used to investigate the role of the IGF-axis in IGFBP5 mediated effects. RESULTS: IGFBP5 enhanced the survival of LX2 cells and myofibroblasts via a >50% suppression of apoptosis. This effect of IGFBP5 was not modulated by the addition of IGF1, nor by silencing of the IGF1R. Additionally, IGFBP5 was able to enhance the expression of established pro-fibrotic markers, such as collagen Ialpha1, TIMP1 and MMP1. CONCLUSION: IGFBP5 enhances the survival of (partially) activated hepatic stellate cells and myofibroblasts by lowering apoptosis via an IGF1-independent mechanism, and enhances the expression of profibrotic genes. Its lowered expression may, therefore, reduce the progression of liver fibrosi

    Broad-Spectrum Matrix Metalloproteinase Inhibition Curbs Inflammation and Liver Injury but Aggravates Experimental Liver Fibrosis in Mice

    Get PDF
    Background Liver fibrosis is characterized by excessive synthesis of extracellular matrix proteins, which prevails over their enzymatic degradation, primarily by matrix metalloproteinases (MMPs). The effect of pharmacological MMP inhibition on fibrogenesis, however, is largely unexplored. Inflammation is considered a prerequisite and important co-contributor to fibrosis and is, in part, mediated by tumor necrosis factor (TNF)-α-converting enzyme (TACE). We hypothesized that treatment with a broad-spectrum MMP and TACE-inhibitor (Marimastat) would ameliorate injury and inflammation, leading to decreased fibrogenesis during repeated hepatotoxin-induced liver injury.Methodology/Principal Findings Liver fibrosis was induced in mice by repeated carbon tetrachloride (CCl4) administration, during which the mice received either Marimastat or vehicle twice daily. A single dose of CCl4was administered to investigate acute liver injury in mice pretreated with Marimastat, mice deficient in Mmp9, or mice deficient in both TNF-α receptors. Liver injury was quantified by alanine aminotransferase (ALT) levels and confirmed by histology. Hepatic collagen was determined as hydroxyproline, and expression of fibrogenesis and fibrolysis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. Marimastat-treated animals demonstrated significantly attenuated liver injury and inflammation but a 25% increase in collagen deposition. Transcripts related to fibrogenesis were significantly less upregulated compared to vehicle-treated animals, while MMP expression and activity analysis revealed efficient pharmacologic MMP-inhibition and decreased fibrolysis following Marimastat treatment. Marimastat pre-treatment significantly attenuated liver injury following acute CCl4-administration, whereas Mmp9 deficient animals demonstrated no protection. Mice deficient in both TNF-α receptors exhibited an 80% reduction of serum ALT, confirming the hepatoprotective effects of Marimastat via the TNF-signaling pathway.Conclusions/Significance Inhibition of MMP and TACE activity with Marimastat during chronic CCl4administration counterbalanced any beneficial anti-inflammatory effect, resulting in a positive balance of collagen deposition. Since effective inhibition of MMPs accelerates fibrosis progression, MMP inhibitors should be used with caution in patients with chronic liver diseases

    Both loved and feared: third party punishers are viewed as formidable and likeable, but these reputational benefits may only be open to dominant individuals

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tCopyright: © 2014 Gordon et al.The datasets associated with this article are available in ORE at http://hdl.handle.net/10871/15639Third party punishment can be evolutionarily stable if there is heterogeneity in the cost of punishment or if punishers receive a reputational benefit from their actions. A dominant position might allow some individuals to punish at a lower cost than others and by doing so access these reputational benefits. Three vignette-based studies measured participants' judgements of a third party punisher in comparison to those exhibiting other aggressive/dominant behaviours (Study 1), when there was variation in the success of punishment (Study 2), and variation in the status of the punisher and the type of punishment used (Study 3). Third party punishers were judged to be more likeable than (but equally dominant as) those who engaged in other types of dominant behaviour (Study 1), were judged to be equally likeable and dominant whether their intervention succeeded or failed (Study 2), and participants believed that only a dominant punisher could intervene successfully (regardless of whether punishment was violent or non-violent) and that subordinate punishers would face a higher risk of retaliation (Study 3). The results suggest that dominance can dramatically reduce the cost of punishment, and that while individuals can gain a great deal of reputational benefit from engaging in third party punishment, these benefits are only open to dominant individuals. Taking the status of punishers into account may therefore help explain the evolution of third party punishment.School of Psychology, University of Exete

    TGF-β in progression of liver disease

    Get PDF
    Transforming growth factor-β (TGF-β) is a central regulator in chronic liver disease contributing to all stages of disease progression from initial liver injury through inflammation and fibrosis to cirrhosis and hepatocellular carcinoma. Liver-damage-induced levels of active TGF-β enhance hepatocyte destruction and mediate hepatic stellate cell and fibroblast activation resulting in a wound-healing response, including myofibroblast generation and extracellular matrix deposition. Being recognised as a major profibrogenic cytokine, the targeting of the TGF-β signalling pathway has been explored with respect to the inhibition of liver disease progression. Whereas interference with TGF-β signalling in various short-term animal models has provided promising results, liver disease progression in humans is a process of decades with different phases in which TGF-β or its targeting might have both beneficial and adverse outcomes. Based on recent literature, we summarise the cell-type-directed double-edged role of TGF-β in various liver disease stages. We emphasise that, in order to achieve therapeutic effects, we need to target TGF-β signalling in the right cell type at the right time

    Targeting of alpha(v) integrin identifies a core molecular pathway that regulates fibrosis in several organs

    Get PDF
    Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not existed. We report that Pdgfrb-Cre inactivates genes in murine HSCs with high efficiency. We used this system to delete the αv integrin subunit because of the suggested role of multiple αv integrins as central mediators of fibrosis in multiple organs. Depletion of the αv integrin subunit in HSCs protected mice from CCl(4)-induced hepatic fibrosis, whereas global loss of αvβ3, αvβ5 or αvβ6 or conditional loss of αvβ8 on HSCs did not. Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of αv integrins using this system was also protective in models of pulmonary and renal fibrosis. Critically, pharmacological blockade of αv integrins by a novel small molecule (CWHM 12) attenuated both liver and lung fibrosis, even when administered after fibrosis was established. These data identify a core pathway that regulates fibrosis, and suggest that pharmacological targeting of all αv integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases

    Serelaxin as a potential treatment for renal dysfunction in cirrhosis: Preclinical evaluation and results of a randomized phase 2 trial

    Get PDF
    <div><p>Background</p><p>Chronic liver scarring from any cause leads to cirrhosis, portal hypertension, and a progressive decline in renal blood flow and renal function. Extreme renal vasoconstriction characterizes hepatorenal syndrome, a functional and potentially reversible form of acute kidney injury in patients with advanced cirrhosis, but current therapy with systemic vasoconstrictors is ineffective in a substantial proportion of patients and is limited by ischemic adverse events. Serelaxin (recombinant human relaxin-2) is a peptide molecule with anti-fibrotic and vasoprotective properties that binds to relaxin family peptide receptor-1 (RXFP1) and has been shown to increase renal perfusion in healthy human volunteers. We hypothesized that serelaxin could ameliorate renal vasoconstriction and renal dysfunction in patients with cirrhosis and portal hypertension.</p><p>Methods and findings</p><p>To establish preclinical proof of concept, we developed two independent rat models of cirrhosis that were characterized by progressive reduction in renal blood flow and glomerular filtration rate and showed evidence of renal endothelial dysfunction. We then set out to further explore and validate our hypothesis in a phase 2 randomized open-label parallel-group study in male and female patients with alcohol-related cirrhosis and portal hypertension. Forty patients were randomized 1:1 to treatment with serelaxin intravenous (i.v.) infusion (for 60 min at 80 μg/kg/d and then 60 min at 30 μg/kg/d) or terlipressin (single 2-mg i.v. bolus), and the regional hemodynamic effects were quantified by phase contrast magnetic resonance angiography at baseline and after 120 min. The primary endpoint was the change from baseline in total renal artery blood flow.</p><p>Therapeutic targeting of renal vasoconstriction with serelaxin in the rat models increased kidney perfusion, oxygenation, and function through reduction in renal vascular resistance, reversal of endothelial dysfunction, and increased activation of the AKT/eNOS/NO signaling pathway in the kidney. In the randomized clinical study, infusion of serelaxin for 120 min increased total renal arterial blood flow by 65% (95% CI 40%, 95%; <i>p <</i> 0.001) from baseline. Administration of serelaxin was safe and well tolerated, with no detrimental effect on systemic blood pressure or hepatic perfusion. The clinical study’s main limitations were the relatively small sample size and stable, well-compensated population.</p><p>Conclusions</p><p>Our mechanistic findings in rat models and exploratory study in human cirrhosis suggest the therapeutic potential of selective renal vasodilation using serelaxin as a new treatment for renal dysfunction in cirrhosis, although further validation in patients with more advanced cirrhosis and renal dysfunction is required.</p><p>Trial registration</p><p>ClinicalTrials.gov <a href="https://clinicaltrials.gov/ct2/show/NCT01640964" target="_blank">NCT01640964</a></p></div
    • …
    corecore