11 research outputs found

    Epidemiology and Antibiotic Succeptibility Profile of Methicillin Sensitive Staphylococcus aureus among Livestock and Pet Animals

    Get PDF
    Staphylococcus aureus is an important zoonotic pathogen that is responsible for a variety of infectious diseases in humans and animals. The present study was designed to check the prevalence and antimicrobial resistance of MSSA from three different animal origins (bovine, caprine and pet). A total of n= 450 samples (150 each source) were collected from bovine, caprine and pets. Collected samples were subjected to S. aurues identification by microbiological examination and confirmed S. aurues isolates were put to oxacillin disk diffusion test to declare them MSSA. The MSSA confirmed isolates were subjected to various antibiotics for susceptibility profiling using Kirby Baur Disk Diffusion test. The present study found higher prevalence of MSSA from caprine origin (goat 83.33%) as compared to pet (cat 69.33%; dog 65.33%) and bovine origin (buffalo 26.66%; cattle 31.66%). The in-vitro findings of current study revealed oxytetracycline and gentamicin presented 100% efficacy against MSSA of all origins while the vancomycin presented >35%, >40% and > 65% resistance against MSSA isolated from bovine, caprine and pet origin respectively. However, ciprofloxacin was equally effective (50%) against MSSA from buffalo and cattle while >80% efficacy was noted against MSSA from cat and dogs. Linezolid and amoxicillin+ clavulanic acid were 77.78% and 66.67% sensitive to MSSA isolates from caprine milk. The present study found higher prevalence of MSSA from bovine, caprine and pet isolates with diversified pattern of susceptibility of different antibiotics from all sources

    Alterations in Quality Parameters of Mastitic Milk

    Get PDF
    Quality milk production in modern dairy systems is facing many challenges. Salient in them is mastitis which is responsible for decline in milk production, altered milk composition and compromised udder health. The malaise consists of multiple bacterial etiologies which can be broadly classified into contagious pathogens and environmental pathogens S. aureus is being isolated invariably in all epidemiological studies, followed by E. coli. Pathogenic virulence in mastitis is often accounted due to microbial ability of producing wide array of virulence factors that enhances pathogenicity and sustainment potential in the epithelial linings of udder. Mastitis affects quality parameters of milk i.e. constitutional as well as mineral profile due to local damage and inflammatory mediators. It decreases the lactose secretion because of oxidative stress generated due to the formation of free radicals in the milk. In mastitic milk, IgG2 becomes the predominant antibody which is thought to be the main opsonin supporting neutrophil phagocytosis in the bovine mammary gland. Therefore, it plays a significant role in the battle against mastitis pathogens. Mastitis infected cow shows a notable elevated level of the sodium and chloride and demoted level of calcium, potassium and inorganic phosphorus. In micro minerals, mastitis effects are pretty much same as in most macro minerals i.e. lower down their concentration in milk secretion. Consistent preventive strategy alongside strict surveillance and biosecurity is recommended for combating this challenge

    Cutaneous Candidiasis

    Get PDF
    Cutaneous candidiasis is a multipicture infection of the skin, generally caused by yeast like fungus c.albicans or other species of genus candida such as candida parapsilosis, candida tropicalis, candida glabrata but these species are unusual, secondary to skin diseases. Candida is flora of gut microbiota, rather than skin, although it is present on skin at some instances. Certain factor of candida species such as ability to evade host defense by biofilm formation, filamentous form and presence of tissue damaging enzyme phospholipase are attributed to pathogenicity. Cutaneous candida infection may occur in patient HIV/AIDS, cancer receiving chemotherapy, antibiotics, steroids therapy and in organ transplantation. Vesicles, pustules, maceration and fissuring are common symptoms on perineum, axilla and interriginous areas. Systemic and topical therapies are common treatment with different drugs. Single drug therapy as combination of anti-fungal, antibacterial and topical corticosteroid has marvelous results. Nystatin, Clotrimaziole and miconazole are efficiently reviewed topical drugs with 73–100% cure

    Etiology of Bovine Mastitis

    Get PDF
    Mastitis in dairy animals is the primary concern of dairy farmers, which is the most common disease that causes huge economic losses in the dairy industry. The economic losses due to mastitis are from a reduction in milk yield, condemnation of milk with antibiotic residues, veterinary treatment costs, and death. In addition, some mastitis pathogens also cause serious human diseases associated with the contamination of milk or milk products with bacteria or their toxins. Bovine mastitis is mainly caused by a wide range of environmental and contagious bacterial mastitis pathogens. Contagious pathogens are those whose main reservoir is the infected udder. Contagious pathogens mainly spread among animals during milking process whereas environmental pathogens spread from environment to udder at any time. The source of the environmental pathogens is the surrounding environment of an animal. The major contagious pathogens include Staphylococcus aureus, Streptococcus agalactiae, and Mycoplasma spp. and the minor contagious pathogens include Corynebacterium bovis and others. Major environmental pathogens include coliform bacteria (Escherichia coli, Klebsiella spp., Enterobacter spp. and Citrobacter spp.), environmental streptococci (Strep. dysgalactiae, Strep. uberis). This chapter covers detailed review of published data on contagious and environmental pathogens responsible for bovine mastitis

    <em>Staphylococcus aureus</em> and Dairy Udder

    No full text
    Staphylococcus aureus is a major causative agent of intra-mammary infections in dairy animals with potential virulence of surface components, toxins, and extracellular enzymes. About 74% quarter prevalence of S. aureus in bovine udder with overall prevalence exceeding 61% in dairy animals. About 17 different serotypes of dairy originated S. aureus have been reported with 24 virulence coding genes for leukocidins (lukED/lukM), pyrogenic toxin super antigen (PTSAg), haemolysins (hla-hlg), toxic-shock syndrome toxin (tst), enterotoxins (sea-seo, seu), exfoliative toxins (eta, etb), and genes for methicillin (mecA) and penicillin (blaZ) resistance. Attainment of refuge inside the macrophages and neutrophils is a major cause of S. aureus mastitis persistence. Mammary prebiotics and probiotics are recently being used as alternatives to antibiotic for the prevention of mastitis. Literature showed anti- staphylococcus vaccines with different results depending upon types of immunization, route of administration and adjuvant used. Studies has shown that herd specific as well as commercial S. aureus vaccines reduce new infections in dairy animals. Experiments are still in progress for the use of vaccines against S. aureus mastitis with optimal efficacy and reliability. Perhaps, there might be bright future because of highly satisfactory trial results of mastitis vaccines in the lab animals

    A Comprehensive Review on Pharmacological Activities of Pachypodol: A Bioactive Compound of an Aromatic Medicinal Plant Pogostemon Cablin Benth

    No full text
    As is well known, plant products have been increasingly utilized in the pharmaceutical industry in recent years. By combining conventional techniques and modern methodology, the future of phytomedicines appears promising. Pogostemon Cablin (patchouli) is an important herb used frequently in the fragrance industries and has various therapeutic benefits. Traditional medicine has long used the essential oil of patchouli (P. cablin) as a flavoring agent recognized by the FDA. This is a gold mine for battling pathogens in China and India. In recent years, this plant has seen a significant surge in use, and approximately 90% of the world’s patchouli oil is produced by Indonesia. In traditional therapies, it is used for the treatment of colds, fever, vomiting, headaches, and stomachaches. Patchouli oil is used in curing many diseases and in aromatherapy to treat depression and stress, soothe nerves, regulate appetite, and enhance sexual attraction. More than 140 substances, including alcohols, terpenoids, flavonoids, organic acids, phytosterols, lignins, aldehydes, alkaloids, and glycosides, have been identified in P. cablin. Pachypodol (C18H16O7) is an important bioactive compound found in P. cablin. Pachypodol (C18H16O7) and many other biologically essential chemicals have been separated from the leaves of P. cablin and many other medicinally significant plants using repeated column chromatography on silica gel. Pachypodol’s bioactive potential has been shown by a variety of assays and methodologies. It has been found to have a number of biological activities, including anti-inflammatory, antioxidant, anti-mutagenic, antimicrobial, antidepressant, anticancer, antiemetic, antiviral, and cytotoxic ones. The current study, which is based on the currently available scientific literature, intends to close the knowledge gap regarding the pharmacological effects of patchouli essential oil and pachypodol, a key bioactive molecule found in this plant

    Herb and Plant-derived Supplements in Poultry Nutrition

    No full text
    Modern poultry industry faces the everlasting challenge of the growing demand for high-quality, low-priced food without compromising general hygiene, health, and welfare standards. To exploit optimal growth potential, antibioticsupplemented feeds were implemented in the past decades. But later on, alternative strategies to trigger the productive characteristics of birds were proposed, including the use of phytochemicals. Phytobiotics are herbs and their derivatives, endowed with many beneficial effects. Herbs and their products enhance feed intake by mitigating intestinal damage, strengthening intestinal integrity, compensating nutritional needs for local and general immune response, reducing the concentration of pathogenic microflora, and preventing local inflammatory response. This form of feed manipulation recently gained interest in the poultry sector due to the lack of side effects, immune system modulation boosting, and stress tolerance. On the other hand, several types of research highlighted the potentially harmful effects of some herbs and their metabolites. This raised concerns among consumers about their safety and implications as feed supplements or medicines. This chapter will provide insights into phytobiotics, their role in immunity and growth, and the possible risks of herbal supplemented feeds in the poultry sector
    corecore