58 research outputs found

    Association patterns of volatile metabolites in urinary excretions among Type-2 Non-Insulin dependent diabetes patients

    Get PDF
    Background: Patterns of volatile metabolites in urine are important to detect abnormalities associated with diabetes. Present study was conducted to find out the excretion patterns of endogenously produced alcohols in urine for type 2 (Non-Insulin Dependent) diabetes mellitus. A cross sectional analytical study was conducted with duration extended from Jan to Mar 2015.Methods: The current study included 40 patients with chronic type 2 diabetes mellitus. In total, 10 sex and age matched subjects with no history of any disease were considered as controls. Blood sugar was estimated by autoanalyzer using standard kit of Merck following manufacturer`s instructions. Urine sugar was quantitatively detected by biuret reagent using titration technique. Urinary alcohol was identified and estimated by gas chromatography.  Urinary ketone bodies were estimated by urinary strip.Results: It was observed that level of fasting blood sugar was significantly increased (P<0.001) in patients as compared to their controls. The blood sugar and urinary alcohol in patients were 3.0% and 6.0% respectively. Urinary ketone bodies were found to be 2+. On the other hand urine sugar, alcohol and ketone bodies were not detected in the negative control subjects.Conclusions: It is concluded that urinary alcohol is endogenously produced in patients with type 2 diabetes due to uncontrolled hyperglycemia. However further work is needed to find out the ratio of urinary and blood alcohol which may confirm the present findings

    Sustainable rural electrification through solar PV DC microgrids—An architecture-based assessment

    Get PDF
    Solar photovoltaic (PV) direct current (DC) microgrids have gained significant popularity during the last decade for low cost and sustainable rural electrification. Various system architectures have been practically deployed, however, their assessment concerning system sizing, losses, and operational efficiency is not readily available in the literature. Therefore, in this research work, a mathematical framework for the comparative analysis of various architectures of solar photovoltaic-based DC microgrids for rural applications is presented. The compared architectures mainly include (a) central generation and central storage architecture, (b) central generation and distributed storage architecture, (c) distributed generation and central storage architecture, and (d) distributed generation and distributed storage architecture. Each architecture is evaluated for losses, including distribution losses and power electronic conversion losses, for typical power delivery from source end to the load end in the custom village settings. Newton&ndash;Raphson method modified for DC power flow was used for distribution loss analysis, while power electronic converter loss modeling along with the Matlab curve-fitting tool was used for the evaluation of power electronic losses. Based upon the loss analysis, a framework for DC microgrid components (PV and battery) sizing was presented and also applied to the various architectures under consideration. The case study results show that distributed generation and distributed storage architecture with typical usage diversity of 40% is the most feasible architecture from both system sizing and operational cost perspectives and is 13% more efficient from central generation and central storage architecture for a typical village of 40 houses. The presented framework and the analysis results will be useful in selecting an optimal DC microgrid architecture for future rural electrification implementations

    Mitigating MAC Layer Performance Anomaly of Wi-Fi Networks through Adaptable Channelization

    Get PDF
    . 802.11 wireless local area networks (WLANs) can support multiple data rates at physical layer by using adaptive modulation and coding (AMC) scheme. However, this differential data rate capability introduces a serious performance anomaly in WLANs. In a network comprising of several nodes with varying transmission rates, nodes with lower data rate (slow nodes) degrade the throughput of nodes with higher transmission rates (fast nodes). The primary source of this anomaly is the channel access mechanism of WLANs which ensures long term equal channel access probability to all nodes irrespective of their transmission rates. In this work, we investigate the use of adaptable width channelization to minimize the effect of this absurdity in performance. It has been observed that surplus channel-width due to lower transmission rate of slow nodes can be assigned to fast nodes connected to other access points (APs), which can substantially increase the overall throughput of the whole network. We propose a medium access control (MAC) layer independent anomaly prevention (MIAP) algorithm that assigns channel-width to nodes connected with different APs based on their transmission rate. We have modeled the effect of adaptable channelization and provide lower and upper bounds for throughput in various network scenarios. Our empirical results indicate a possible increase in network throughput by more than 20% on employing the proposed MIAP algorith

    Borylation–Reduction–Borylation for the Formation of 1,4-Azaborines

    Get PDF
    This project has received funding from the Leverhulme Trust (grant Number RPG-2022-032) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 769599). M.J.I. and E.Z.-C. also thank the EPSRC Programme Grant “Boron: Beyond the Reagent” (EP/W007517/1) for support.Given the current interest in materials containing 1,4-azaborine units, the development of new routes to these structures is important. Carbonyl directed electrophilic borylation using BBr3 is a facile method for the ortho-borylation of N,N-diaryl-amide derivatives. Subsequent addition of Et3SiH results in carbonyl reduction and then formation of 1,4-azaborines that can be protected in situ using a Grignard reagent. Overall, borylation–reduction–borylation is a one-pot methodology to access 1,4-azaborines from simple precursors.Publisher PDFPeer reviewe

    N-Heterocyclic carbene acyl anion organocatalysis by ball-milling

    Get PDF
    The ability to conduct N‐heterocyclic carbene‐catalysed acyl anion chemistry under ball‐milling conditions is reported for the first time. This process has been exemplified through applications to intermolecular‐benzoin, intramolecular‐benzoin, intermolecular‐Stetter and intramolecular‐Stetter reactions including asymmetric examples and demonstrates that this mode of mechanistically complex organocatalytic reaction can operate under solvent‐minimised conditions

    Homozygosity mapping reveals novel and known mutations in Pakistani families with inherited retinal dystrophies.

    Get PDF
    Inherited retinal dystrophies are phenotypically and genetically heterogeneous. This extensive heterogeneity poses a challenge when performing molecular diagnosis of patients, especially in developing countries. In this study, we applied homozygosity mapping as a tool to reduce the complexity given by genetic heterogeneity and identify disease-causing variants in consanguineous Pakistani pedigrees. DNA samples from eight families with autosomal recessive retinal dystrophies were subjected to genome wide homozygosity mapping (seven by SNP arrays and one by STR markers) and genes comprised within the detected homozygous regions were analyzed by Sanger sequencing. All families displayed consistent autozygous genomic regions. Sequence analysis of candidate genes identified four previously-reported mutations in CNGB3, CNGA3, RHO, and PDE6A, as well as three novel mutations: c.2656C &gt; T (p.L886F) in RPGRIP1, c.991G &gt; C (p.G331R) in CNGA3, and c.413-1G &gt; A (IVS6-1G &gt; A) in CNGB1. This latter mutation impacted pre-mRNA splicing of CNGB1 by creating a -1 frameshift leading to a premature termination codon. In addition to better delineating the genetic landscape of inherited retinal dystrophies in Pakistan, our data confirm that combining homozygosity mapping and candidate gene sequencing is a powerful approach for mutation identification in populations where consanguineous unions are common

    Effect of compost application on the growth of Acacia Nilotica

    Get PDF
    Acacia nilotica is an important agroforestry specie, which is used in both compact and linear forms. The objective of the current study was to evaluate the effect of compost on the growth performance and biomass production of A. nilotica. Completely randomized design (CRD) was used to analyze the variations among several growth morphological traits. Two parallel trials, pot trial (seedlings), field trial (saplings) were conducted simultaneously. Compost and litter mixture were applied in mentioned trials. Following treatments were used: T0 – control; T1 - 25% of compost and 75% of nursery soil; T2 - mixture of 50% nursery soil and 50% compost; T3 - mixture of 75% compost and 25% of nursery soil; T4 - where 100% compost was applied. Increase in plant growth was observed with the increases in the amount of compost mixture. In field trial maximum plant height, shoot length, root length, rootshoot ratio and biomass production was observed when 100% compost level was applied, while minimum was observed without any compost appli-cation. In pot trials, the maximum plant height, rootshoot ratio and biomass production was recorded when 75% compost level was applied. Overall, Acacia performed better with 100% of compost application in field trail and 75% of compost application in pot trial. The results of this study demonstrated the positive effects of compost on the growth of Acacia. The seedling development was improved considerably with different levels having greater percentage of organic fertilizer and it was concluded that compost improves soil fertility and it should be used as organic fertilizer in farming and forestry practices for improving crop growth and yield

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
    • 

    corecore