5,607 research outputs found

    Superfluid and Pseudo-Goldstone Modes in Three Flavor Crystalline Color Superconductivity

    Full text link
    We study the bosonic excitations in the favorite cubic three flavor crystalline LOFF phases of QCD. We calculate in the Ginzburg-Landau approximation the masses of the eight pseudo Nambu-Goldstone Bosons (NGB) present in the low energy theory. We also compute the decay constants of the massless NGB Goldstones associated to superfluidity as well as those of the eight pseudo NGB. Differently from the corresponding situation in the Color-Flavor-Locking phase, we find that meson condensation phases are not expected in the present scenario.Comment: 10 pages, RevTeX4 class. Section IIIA enlarged, to appear on Phys. Rev.

    Phase sensitive detection of dipole radiation in a fiber-based high numerical aperture optical system

    Get PDF
    We theoretically study the problem of detecting dipole radiation in an optical system of high numerical aperture in which the detector is sensitive to \textit{field amplitude}. In particular, we model the phase sensitive detector as a single-mode cylindrical optical fiber. We find that the maximum in collection efficiency of the dipole radiation does not coincide with the optimum resolution for the light gathering instrument. The calculated results are important for analyzing fiber-based confocal microscope performance in fluorescence and spectroscopic studies of single molecules and/or quantum dots.Comment: 12 pages, 2 figure

    Biochar as plant growth promoter: Better off alone or mixed with organic amendments?

    Get PDF
    Biochar is nowadays largely used as a soil amendment and is commercialized worldwide. However, in temperate agro-ecosystems the beneficial effect of biochar on crop productivity is limited, with several studies reporting negative crop responses. In this work, we studied the effect of 10 biochar and 9 not pyrogenic organic amendments (NPOA), using pure and in all possible combinations on lettuce growth (Lactuca sativa). Organic materials were characterized by 13C-CPMAS NMR spectroscopy and elemental analysis (pH, EC, C, N, C/N and H/C ratios). Pure biochars and NPOAs have variable effects, ranging from inhibition to strong stimulation on lettuce growth. For NPOAs, major inhibitory effects were found with N poor materials characterized by high C/N and H/C ratio. Among pure biochars, instead, those having a low H/C ratio seem to be the best for promoting plant growth. When biochars and organic amendments were mixed, non-additive interactions, either synergistic or antagonistic, were prevalent. However, the mixture effect on plant growth was mainly dependent on the chemical quality of NPOAs, while biochar chemistry played a secondary role. Synergisms were prevalent when N rich and lignin poor materials were mixed with biochar. On the contrary, antagonistic interactions occurred when leaf litter or woody materials were mixed with biochar. Further research is needed to identify the mechanisms behind the observed non-additive effects and to develop biochar-organic amendment combinations that maximize plant productivity in different agricultural systems

    A diagrammatic derivation of the meson effective masses in the neutral color-flavor-locked phase of Quantum Chromodynamics

    Full text link
    We offer a diagrammatic derivation of the effective masses of the axial flavor excitations in the electrical and color neutral CFL phase of QCD. In particular we concentrate on the excitations with the quantum numbers of the kaons: we show how their effective chemical potentials, responsible of their Bose-Einstein condensation and found previously on the basis of pure symmetry arguments, arise at the microscopic level by loop effects. We perform also the numerical evaluation of the relevant loops in the whole CFL regime Ms2/2μΔ1M_s^2/2\mu\Delta\leqslant 1, showing the existence of the enhancement of the kaon condensation with respect to the lowest order result. Finally we discuss the role of electrical and color neutrality in the microscopic calculation.Comment: 10 pages, 2 figures, RevTeX4 style. Version accepted for publication on JHEP. Some minor change in the tex

    On attributes of a Rotating Neutron star with a Hyperon core

    Full text link
    We study the effect of rotation on global properties of neutron star with a hyperon core in an effective chiral model with varying nucleon effective mass within a mean field approach. The resulting gross properties of the rotating compact star sequences are then compared and analyzed with other theoretical predictions and observations from neutron stars. The maximum mass of the compact star predicted by the model lies in the range (1.42.4) M(1.4-2.4) ~M_{\odot} at Kepler frequency ΩK\Omega_K, which is consistant with recent observation of high mass stars thereby reflecting the sensitivity of the underlying nucleon effective mass in the dense matter EoS. We also discuss the implications of the experimental constraints from the flow data from heavy-ion collisions on the global properties of the rotating neutron stars.Comment: 11 Pages, 10 Figures and 2 Table

    Equilibrium sequences of hybrid stars with LOFF matter core

    Get PDF
    We study equilibrium configurations of hybrid stars with inhomogeneous Color SuperConducting (CSC) phases in the inner core and a mantle of nuclear matter

    Analysis of At-Altitude LTE Power Spectra for C2 Communications for UAS Traffic Management

    Get PDF
    The National Aeronautics and Space Administrations (NASA) Unmanned Aircraft Systems Traffic Management (UTM) project works to develop tools and technologies essential for safely enabling civilian low-altitude small Unmanned Aerial Systems (sUAS, also known as drones) operations. This paper presents results of work completed in the paper [1] presented at the 2018 ICNS conference where proposed approaches were explored for evaluating and analyzing sUAS Command and Control (C2) links based on commercial cellular networks. This paper focuses on the UTM Projects Technology Capability Level 3 (TCL-3) test results which address the communications portion identified within the same paper. A software defined radio (SDR) was flown as a sUAS payload to capture received signal spectrum in Long Term Evolution (LTE) frequency bands of interest. The purpose was to measure the RF environment at UTM altitudes to characterize the interference potential. The SDR payload was flown at various stationary altitudes where the LTE over-the-air complex (I/Q) samples were captured by the SDR and later post-processed. The SDR received inputs through an omnidirectional antenna. The complex samples captured were an aggregate of transmissions received from all line-of-sight (LOS) towers within the geographic area for the specific radio frequency bandwidth the SDR is programmed to capture. Using this approach, the complex samples captured do not distinguish between the various eNodeB's (Long Term Evolution (LTE) transmitting towers). The complex samples were post processed via a Discrete Fourier Transform (DFT) algorithm to view the captured spectrum along with the power levels across the captured LTE bandwidth. This SDR payload process of capturing complex samples was done at two different regions within the US: 1) NASA's Ames Research Center (ARC) in Moffett Field, CA, and 2) Griffiss Airfield in Rome, NY. The data capture at the ARC site was done at two physical locations within the Ames campus where many stationary altitude captures where done as high as 800 ft. above ground level (AGL). The data captured at the Griffiss Airport (also known as the NY Corridor Site) were acquired at one location with three specific stationary altitude levels {Ground Level (GL), 300 ft., and 400 ft.}. The LTE spectrum power levels were captured for two LTE carriers, AT&T and Verizon, at both sites where their respective spectra and power levels were measured and compared at various altitudes. The overall results show that there is an increase in LTE spectrum power levels at higher altitudes for drones. A detailed analysis of this data and conclusions drawn from the results are presented in this paper

    Spike-in SILAC proteomic approach reveals the vitronectin as an early molecular signature of liver fibrosis in hepatitis C infections with hepatic iron overload

    Get PDF
    Hepatitis C virus (HCV)-induced iron overload has been shown to promote liver fibrosis, steatosis, and hepatocellular carcinoma. The zonal-restricted histological distribution of pathological iron deposits has hampered the attempt to perform large-scale in vivo molecular investigations on the comorbidity between iron and HCV. Diagnostic and prognostic markers are not yet available to assess iron overload-induced liver fibrogenesis and progression in HCV infections. Here, by means of Spike-in SILAC proteomic approach, we first unveiled a specific membrane protein expression signature of HCV cell cultures in the presence of iron overload. Computational analysis of proteomic dataset highlighted the hepatocytic vitronectin expression as the most promising specific biomarker for iron-associated fibrogenesis in HCV infections. Next, the robustness of our in vitro findings was challenged in human liver biopsies by immunohistochemistry and yielded two major results: (i) hepatocytic vitronectin expression is associated to liver fibrogenesis in HCV-infected patients with iron overload; (ii) hepatic vitronectin expression was found to discriminate also the transition between mild to moderate fibrosis in HCV-infected patients without iron overload. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    corecore