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Summary. — We study equilibrium configurations of hybrid stars with inhomo-
geneous Color SuperConducting (CSC) phases in the inner core and a mantle of
nuclear matter.

PACS 12.38.Mh — Quark-gluon plasma.
PACS 24.85.+p — Quarks, gluons, and QCD in nuclear reactions.

Since the publication of the first articles about Color SuperConductivity, it was clear
that the primary place where these phases could be searched is in the core of very
compact stars, generically named Neutron Stars. Matter in the interiors of neutron
stars is compressed by gravity to densities much larger than the density of an ordinary
nucleus (by factors up to 10). At such densities baryons are likely to lose their identity
and dissolve into deconfined quarks. If compact (hybrid) stars featuring quark cores
surrounded by a nuclear mantle exist in nature, they could provide a unique window on
the properties of QCD at high baryon densities.

Following the analysis given in [1], we study the possibility that the equation of state
of matter at high densities admits stable configurations of self-gravitating objects in
General Relativity featuring deconfined quark matter, and if so, we check if the gross
parameters of these objects, like their mass and radius, are compatible with the known
astronomical bounds.

Because of (-equilibrium in the light quark sector the chemical potentials of v and
d quarks obey the constraint pq = pty + pte. Furthermore, the Fermi surface of strange
quarks is mismatched with the Fermi surfaces of light u and d quarks because of the
large strange quark mass. We have already incorporated these features in our previously
described studies about the three flavor LOFF phases [2, 3].

The nuclear equation of state can be constructed starting from a number of differ-
ent principles [4]. We tested a large number of equations of state to construct hybrid
star configurations. These belong to the classes of i) non-relativistic variational and
Bruckner-Hartree-Fock theories which use as an input a non-relativistic potential fitted
to the elastic nucleon-nucleon scattering data; ii) relativistic mean-field models which are
fitted to the bulk properties of nuclear matter, and iii) relativistic models which include
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correlations at the level of the covariant scattering amplitude (Dirac-Bruckner-Hartree-
Fock theories). In the analysis presented here, it was sufficient to characterize these
equations of states by their stiffness; as we shall see, only the stiffest equations of state
are admissible for phase equilibrium between nuclear and quark matter.

A straightforward normalization of the quark pressure in the NJL model requires that
the pressure vanishes at zero density and temperature. In the terminology of the MIT
bag model, this is equivalent to subtraction of a bag constant from the thermodynamic
potential. Since the value of the bag constant is related to confinement which is absent in
the NJL model, it appears reasonable to consider changes in its value, and hence in the
normalization of the pressure. We shall consider the simple case of a constant shift in the
asymptotic value of the pressure. In ref. [3] the calculation of masses and condensates
has been carried out for n = Gp/Gs = 0.75. This regime is usually referred to as
“intermediate coupling”. We shall adopt a “strong coupling” regime with n = 1, since
only in the latter case the matching to the nuclear equations of state can be performed
without variations in the bag constant (we will discuss this point in more detail in the
following subsection).

Physically, the true nuclear equation of state must go over to some sort of quark
equation of state at some density if deconfinement takes place in nature. Since we have
only models of deconfined matter and nuclear matter, this transition is modeled by
requiring that there exists a baryo-chemical potential at which the pressures of these
phases are equal. This is equivalent to the condition that the pressure vs. the chemical
potential curves P(u) for these phases cross (matching). If the P(u) curves for the chosen
equations of state of nuclear and quark matter do not cross, the models are incompatible
in the sense that they cannot describe the desired transition between nuclear and quark
matter. The low-density equation of state of nuclear matter and the high-density equation
of state of CCS matter are matched at an interface via the Maxwell construction. The
phase with largest pressure is the one that is realized at a given chemical potential.

The high-density regime contains two equations of state for crystalline color supercon-
ductivity which differ for the normalization of pressure at zero density (or, equivalently,
the value of the bag constant). The model Al is normalized such that the pressure van-
ishes at zero density. For the models A and B the zero-density pressure is shifted by an
amount 6p = 10 MeV /fm®. We are aware of the arbitrariness of the latter procedure, the
sole practical purpose of which is to produce an equation of state which can be matched
to a particular nuclear equation of state. Yet another possibility is to set dp = 0, but
vary the value of the constituent masses of the light quarks in the fit of the parameters
of the NJL model.

A set of nuclear equations of state were tested for matching with the models above;
it included about dozen equations of state, listed in refs. [4]. Only two equations of
state based on the Dirac-Bruckner-Hartree-Fock approach are suitable to match with
the quark equations of state presented above. These are shown in both panels of fig. 1.

We consider equilibrium and stability of cold hybrid stars with LOFF cores. Each
equation of state defines a sequence of equilibrium, non-rotating stellar configurations in
General Relativity, which can be parameterized in terms of the central density p. of the
configuration. It is assumed that the configurations are cold (T" ~ 0). The spherically
symmetric solutions of Einstein’s equations for self-gravitating fluids are given by the
well-known Tolman-Opennheimer-Volkoff equations. A generic feature of these solutions
is the existence of a maximum mass for any equation of state; as the central density
is increased beyond the value corresponding to the maximum mass, the stars become
unstable towards collapse to a black hole. One criterion for the stability of a sequence
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Fig. 1. — Left panel: dependence of masses of hybrid, non-rotating compact stars on their central
density for the models A, A1, and B. The dashed lines show the same for the associated nuclear
equations of state. My stays for the mass of the Sun. We use indifferently the notations My and
M. Right panel: mass-radius diagram for non-rotating configurations including the bounds
from EXO 0748-676 and the bounds on the upper and lower pulsar masses. The sequences of
hybrid configurations for model A (heavy, black online), Al (medium-light, red online), and B
(light, blue online) are shown by solid lines. Models A and A1l share the same nuclear (low-
density) equation of state, while the models A and B share the same quark (high-density)
equation of state. The dashed lines are the sequences of purely nuclear stars with underlying
nuclear equations of state of model A (equivalently A1) and model B.

of configurations is the requirement that the derivative dM/dp. should be positive (the
mass of the star should be an increasing function of the central density). At the point of
instability the fundamental (pulsation) modes become unstable. If stability is regained
at higher central densities, the modes by which the stars become unstable towards the
eventual collapse belong to higher-order harmonics.

For configurations constructed from a purely nuclear equation of state the stable
sequence extends up to a maximum mass of the order 2 M, (right panel of fig. 1, dashed
lines); the value of the maximum mass is large, since our chosen equations of state are
rather hard. The hybrid configurations branch off from the nuclear configurations when
the central density reaches that of the deconfinement phase transition. The jump in
the density at constant pressure causes a plateau of marginal stability beyond the point
where the hybrid stars bifurcate. This is followed by an unstable branch (dM/dp. < 0).
Most importantly, the stability is regained at larger central densities: a stable branch
of hybrid stars emerges in the range of central densities 1.3 < p. < 2.5 x 10 gcm™3.
The models A and B feature the same high-density quark matter, whereas the models A
and A1l the same nuclear equation of state. It is seen that the effect of having different
nuclear equations of state (the models A and B) at intermediate densities is substantial
(at densities below 1013 gcm? all models are matched to the same equation of state). At
the same time, the small shift dp by which the models A and A1 differ does not influence
the masses of stable hybrid stars, although it is necessary for matching of nuclear and
quark EOS in the models A and B. It is evident that there will exist purely nuclear
and hybrid configurations with different central densities but the same masses. This
is reminiscent of the situation encountered in non-superconducting hybrid stars [5]; the
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second branch of hybrid stars was called twin, since for each hybrid star there always
exists a counterpart with the same mass composed entirely of nuclear matter.

The right panel of fig. 1 displays the astronomical bounds on the masses and radii
of compact stars along with the “tracks” for our models on the mass-radius diagram.
All bounds are quoted at the 1o level. The bound inferred from the star EXO0748-676,
which combines information from redshifted O and F lines, the emitting area of X-ray
radiation, and the Eddington luminosity, constrain the mass and the radius of a compact
star to lie on a straight line shown in the right panel of fig. 1 [6]. Both the hybrid stars
and their nuclear counterparts have masses and radii within these bounds. For sequences
constructed from models A and Al there is a range of masses and radii that correspond
to the new family of twin stars discussed above. The stars belonging to the new family
lie to the left from the sharp kink at the point R ~ 13.5km and M ~ 1.9M. The
stable branch of this new family of stars is separated from the stable nuclear sequence
by an instability region. The sequences corresponding to model B do not show such an
instability region.

Some evidence for massive neutron stars with M ~ 2Mg has been inferred from
recent measurements on the pulsar PSR B1516+02B in the Globular Cluster M5 gave
M =1.96+0.1Mg [7]. The models A and Al are consistent with these bounds. For the
model B these bounds correspond to the stable configuration with the largest mass. For
completeness, the lower bound on the neutron star mass 1.249+0.001 Mg is shown in
the right panel of fig. 1, which is inferred from the millisecond binary J0737-3039 [8].

We stress that our models of color superconducting hybrid stars with LOFF matter
core can be used to obtain quantitative limits on the strain of gravitational wave emission
that can be emitted. This topic will be studied in a future work.
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