1,042 research outputs found
Total synthesis of welwistatin using rhodium (II) catalyzed diazoketone rearrangement
published_or_final_versio
Porous carbons from inverse vulcanised polymers
Elemental sulfur is an underutilised industrial by-product. It has been recently shown that it can be simply and scalably co-polymerised, by “inverse vulcanisation” with organic crosslinkers. The properties of porous carbons, which have extensive uses in science and industry, are influenced by the materials from which they are generated. Reported here are the first examples of porous carbons produced from high-sulfur inverse vulcanised polymers. The materials produced show micro-porosity, gas selectivity, and are doped with sulfur. The simplicity of the technique, and wide range of other potential inverse vulcanised feedstocks, gives scope for transferability and control of properties
PD-1 Regulates Neural Damage in Oligodendroglia-Induced Inflammation
We investigated the impact of immune regulatory mechanisms involved in the modulation of the recently presented, CD8+ lymphocyte mediated immune response in a mouse model of oligodendropathy-induced inflammation (PLPtg-mutants). The focus was on the role of the co-inhibitory molecule PD-1, a CD28-related receptor expressed on activated T- and B-lymphocytes associated with immune homeostasis and autoimmunity. PLPtg/PD-1-deficient double mutants and the corresponding bone marrow chimeras were generated and analysed using immunohistochemistry, light- and electron microscopy, with particular emphasis on immune-cell number and neural damage. In addition, the immune cells in both the CNS and the peripheral immune system were investigated by IFN-gamma elispot assays and spectratype analysis. We found that mice with combined pathology exhibited significantly increased numbers of CD4+ and CD8+ T-lymphocytes in the CNS. Lack of PD-1 substantially aggravated the pathological phenotype of the PLPtg mutants compared to genuine PLPtg mutants, whereas the PD-1 deletion alone did not cause alterations in the CNS. CNS T-lymphocytes in PLPtg/PD-1-/- double mutants exhibited massive clonal expansions. Furthermore, PD-1 deficiency was associated with a significantly higher propensity of CNS but not peripheral CD8+ T-cells to secrete proinflammatory cytokines. PD-1 could be identified as a crucial player of tissue homeostasis and immune-mediated damage in a model of oligodendropathy-induced inflammation. Alterations of this regulatory pathway lead to overt neuroinflammation of high pathogenetic impact. Our finding may have implications for understanding the mechanisms leading to the high clinical variability of polygenic or even monogenic disorders of the nervous system
Minimal residual disease-based risk stratification in Chinese childhood acute lymphoblastic leukemia by flow cytometry and plasma DNA quantitative polymerase chain reaction
published_or_final_versio
Closed-loop separation control over a sharp edge ramp using Genetic Programming
We experimentally perform open and closed-loop control of a separating
turbulent boundary layer downstream from a sharp edge ramp. The turbulent
boundary layer just above the separation point has a Reynolds number
based on momentum thickness. The goal of the
control is to mitigate separation and early re-attachment. The forcing employs
a spanwise array of active vortex generators. The flow state is monitored with
skin-friction sensors downstream of the actuators. The feedback control law is
obtained using model-free genetic programming control (GPC) (Gautier et al.
2015). The resulting flow is assessed using the momentum coefficient, pressure
distribution and skin friction over the ramp and stereo PIV. The PIV yields
vector field statistics, e.g. shear layer growth, the backflow area and vortex
region. GPC is benchmarked against the best periodic forcing. While open-loop
control achieves separation reduction by locking-on the shedding mode, GPC
gives rise to similar benefits by accelerating the shear layer growth.
Moreover, GPC uses less actuation energy.Comment: 24 pages, 24 figures, submitted to Experiments in Fluid
Increased Plp1 gene expression leads to massive microglial cell activation and inflammation throughout the brain
PMD (Pelizaeus–Merzbacher disease) is a rare neurodegenerative disorder that impairs motor and cognitive functions and is associated with a shortened lifespan. The cause of PMD is mutations of the PLP1 [proteolipid protein 1 gene (human)] gene. Transgenic mice with increased Plp1 [proteolipid protein 1 gene (non-human)] copy number model most aspects of PMD patients with duplications. Hypomyelination and demyelination are believed to cause the neurological abnormalities in mammals with PLP1 duplications. We show, for the first time, intense microglial reactivity throughout the grey and white matter of a transgenic mouse line with increased copy number of the native Plp1 gene. Activated microglia in the white and grey matter of transgenic mice are found as early as postnatal day 7, before myelin commences in normal cerebra. This finding indicates that degeneration of myelin does not cause the microglial response. Microglial numbers are doubled due to in situ proliferation. Compared with the jp (jimpy) mouse, which has much more oligodendrocyte death and hardly any myelin, microglia in the overexpressors show a more dramatic microglial reactivity than jp, especially in the grey matter. Predictably, many classical markers of an inflammatory response, including TNF-α (tumour necrosis factor-α) and IL-6, are significantly up-regulated manyfold. Because inflammation is believed to contribute to axonal degeneration in multiple sclerosis and other neurodegenerative diseases, inflammation in mammals with increased Plp1 gene dosage may also contribute to axonal degeneration described in patients and rodents with PLP1 increased gene dosage
Intrusion detection routers: Design, implementation and evaluation using an experimental testbed
In this paper, we present the design, the implementation details, and the evaluation results of an intrusion detection and defense system for distributed denial-of-service (DDoS) attack. The evaluation is conducted using an experimental testbed. The system, known as intrusion detection router (IDR), is deployed on network routers to perform online detection on any DDoS attack event, and then react with defense mechanisms to mitigate the attack. The testbed is built up by a cluster of sufficient number of Linux machines to mimic a portion of the Internet. Using the testbed, we conduct real experiments to evaluate the IDR system and demonstrate that IDR is effective in protecting the network from various DDoS attacks. © 2006 IEEE.published_or_final_versio
Small RNA analysis in Sindbis virus infected human HEK293 cells
In contrast to the defence mechanism of RNA interference (RNAi) in plants and invertebrates, its role in the innate response to virus infection of mammals is a matter of debate. Since RNAi has a well-established role in controlling infection of the alphavirus Sindbis virus (SINV) in insects, we have used this virus to investigate the role of RNAi in SINV infection of human cells
- …