33 research outputs found

    Conserved and Distinct Modes of CREB/ATF Transcription Factor Regulation by PP2A/B56Ξ³ and Genotoxic Stress

    Get PDF
    Activating transcription factor 1 (ATF1) and the closely related proteins CREB (cyclic AMP resonse element binding protein) and CREM (cyclic AMP response element modulator) constitute a subfamily of bZIP transcription factors that play critical roles in the regulation of cellular growth, metabolism, and survival. Previous studies demonstrated that CREB is phosphorylated on a cluster of conserved Ser residues, including Ser-111 and Ser-121, in response to DNA damage through the coordinated actions of the ataxia-telangiectasia-mutated (ATM) protein kinase and casein kinases 1 and 2 (CK1/2). Here, we show that DNA damage-induced phosphorylation by ATM is a general feature of CREB and ATF1. ATF1 harbors a conserved ATM/CK cluster that is constitutively and stoichiometrically phosphorylated by CK1 and CK2 in asynchronously growing cells. Exposure to DNA damage further induced ATF1 phosphorylation on Ser-51 by ATM in a manner that required prior phosphorylation of the upstream CK residues. Hyperphosphorylated ATF1 showed a 4-fold reduced affinity for CREB-binding protein. We further show that PP2A, in conjunction with its targeting subunit B56Ξ³, antagonized ATM and CK1/2-dependent phosphorylation of CREB and ATF1 in cellulo. Finally, we show that CK sites in CREB are phosphorylated during cellular growth and that phosphorylation of these residues reduces the threshold of DNA damage required for ATM-dependent phosphorylation of the inhibitory Ser-121 residue. These studies define overlapping and distinct modes of CREB and ATF1 regulation by phosphorylation that may ensure concerted changes in gene expression mediated by these factors

    Regulation of Energy Stores and Feeding by Neuronal and Peripheral CREB Activity in Drosophila

    Get PDF
    The cAMP-responsive transcription factor CREB functions in adipose tissue and liver to regulate glycogen and lipid metabolism in mammals. While Drosophila has a homolog of mammalian CREB, dCREB2, its role in energy metabolism is not fully understood. Using tissue-specific expression of a dominant-negative form of CREB (DN-CREB), we have examined the effect of blocking CREB activity in neurons and in the fat body, the primary energy storage depot with functions of adipose tissue and the liver in flies, on energy balance, stress resistance and feeding behavior. We found that disruption of CREB function in neurons reduced glycogen and lipid stores and increased sensitivity to starvation. Expression of DN-CREB in the fat body also reduced glycogen levels, while it did not affect starvation sensitivity, presumably due to increased lipid levels in these flies. Interestingly, blocking CREB activity in the fat body increased food intake. These flies did not show a significant change in overall body size, suggesting that disruption of CREB activity in the fat body caused an obese-like phenotype. Using a transgenic CRE-luciferase reporter, we further demonstrated that disruption of the adipokinetic hormone receptor, which is functionally related to mammalian glucagon and Ξ²-adrenergic signaling, in the fat body reduced CRE-mediated transcription in flies. This study demonstrates that CREB activity in either neuronal or peripheral tissues regulates energy balance in Drosophila, and that the key signaling pathway regulating CREB activity in peripheral tissue is evolutionarily conserved

    Involvement of Noradrenergic Transmission in the PVN on CREB Activation, TORC1 Levels, and Pituitary-Adrenal Axis Activity during Morphine Withdrawal

    Get PDF
    Experimental and clinical findings have shown that administration of adrenoceptor antagonists alleviated different aspects of drug withdrawal and dependence. The present study tested the hypothesis that changes in CREB activation and phosphorylated TORC1 levels in the hypothalamic paraventricular nucleus (PVN) after naloxone-precipitated morphine withdrawal as well as the HPA axis activity arises from Ξ±1- and/or Ξ²-adrenoceptor activation. The effects of morphine dependence and withdrawal on CREB phosphorylation (pCREB), phosphorylated TORC1 (pTORC1), and HPA axis response were measured by Western-blot, immunohistochemistry and radioimmunoassay in rats pretreated with prazosin (Ξ±1-adrenoceptor antagonist) or propranolol (Ξ²-adrenoceptor antagonist). In addition, the effects of morphine withdrawal on MHPG (the main NA metabolite at the central nervous system) and NA content and turnover were evaluated by HPLC. We found an increase in MHPG and NA turnover in morphine-withdrawn rats, which were accompanied by increased pCREB immunoreactivity and plasma corticosterone concentrations. Levels of the inactive form of TORC1 (pTORC1) were decreased during withdrawal. Prazosin but not propranolol blocked the rise in pCREB level and the decrease in pTORC1 immunoreactivity. In addition, the HPA axis response to morphine withdrawal was attenuated in prazosin-pretreated rats. Present results suggest that, during acute morphine withdrawal, NA may control the HPA axis activity through CREB activation at the PVN level. We concluded that the combined increase in CREB phosphorylation and decrease in pTORC1 levels might represent, in part, two of the mechanisms of CREB activation at the PVN during morphine withdrawal

    Requirement of TORC1 for Late-Phase Long-Term Potentiation in the Hippocampus

    Get PDF
    Late-phase long-term potentiation (L-LTP) and long-term memory depend on the transcription of mRNA of CRE-driven genes and synthesis of proteins. However, how synaptic signals propagate to the nucleus is unclear. Here we report that the CREB coactivator TORC1 (transducer of regulated CREB activity 1) undergoes neuronal activity-induced translocation from the cytoplasm to the nucleus, a process required for CRE-dependent gene expression and L-LTP. Overexpressing a dominant-negative form of TORC1 or down-regulating TORC1 expression prevented activity-dependent transcription of CREB target genes in cultured hippocampal neurons, while overexpressing a wild-type form of TORC1 facilitated basal and activity-induced transcription of CREB target genes. Furthermore, overexpressing the dominant-negative form of TORC1 suppressed the maintenance of L-LTP without affecting early-phase LTP, while overexpressing the wild-type form of TORC1 facilitated the induction of L-LTP in hippocampal slices. Our results indicate that TORC1 is essential for CRE-driven gene expression and maintenance of long-term synaptic potentiation

    Activation of TORC1 transcriptional coactivator through MEKK1-induced phosphorylation

    Get PDF
    CREB is a prototypic bZIP transcription factor and a master regulator of glucose metabolism, synaptic plasticity, cell growth, apoptosis, and tumorigenesis. Transducers of regulated CREB activity (TORCs) are essential transcriptional coactivators of CREB and an important point of regulation on which various signals converge. In this study, we report on the activation of TORC1 through MEKK1-mediated phosphorylation. MEKK1 potently activated TORC1, and this activation was independent of downstream effectors MEK1/MEK2, ERK2, JNK, p38, protein kinase A, and calcineurin. MEKK1 induced phosphorylation of TORC1 both in vivo and in vitro. Expression of the catalytic domain of MEKK1 alone in cultured mammalian cells sufficiently caused phosphorylation and subsequent activation of TORC1. MEKK1 physically interacted with TORC1 and stimulated its nuclear translocation. An activation domain responsive to MEKK1 stimulation was mapped to amino acids 431-650 of TORC1. As a physiological activator of CREB, interleukin 1Ξ± triggered MEKK1-dependent phosphorylation of TORC1 and its consequent recruitment to the cAMP response elements in the interleukin 8 promoter. Taken together, our findings suggest a new mechanism for regulated activation of TORC1 transcriptional coactivator and CREB signaling. Β© 2008 by The American Society for Cell Biology.published_or_final_versio

    Identification of Novel Genes and Pathways Regulating SREBP Transcriptional Activity

    Get PDF
    BACKGROUND: Lipid metabolism in mammals is orchestrated by a family of transcription factors called sterol regulatory element-binding proteins (SREBPs) that control the expression of genes required for the uptake and synthesis of cholesterol, fatty acids, and triglycerides. SREBPs are thus essential for insulin-induced lipogenesis and for cellular membrane homeostasis and biogenesis. Although multiple players have been identified that control the expression and activation of SREBPs, gaps remain in our understanding of how SREBPs are coordinated with other physiological pathways. METHODOLOGY: To identify novel regulators of SREBPs, we performed a genome-wide cDNA over-expression screen to identify proteins that might modulate the transcription of a luciferase gene driven from an SREBP-specific promoter. The results were verified through secondary biological assays and expression data were analyzed by a novel application of the Gene Set Enrichment Analysis (GSEA) method. CONCLUSIONS/SIGNIFICANCE: We screened 10,000 different cDNAs and identified a number of genes and pathways that have previously not been implicated in SREBP control and cellular cholesterol homeostasis. These findings further our understanding of lipid biology and should lead to new insights into lipid associated disorders

    Involvement of SIK3 in Glucose and Lipid Homeostasis in Mice

    Get PDF
    Salt-inducible kinase 3 (SIK3), an AMP-activated protein kinase-related kinase, is induced in the murine liver after the consumption of a diet rich in fat, sucrose, and cholesterol. To examine whether SIK3 can modulate glucose and lipid metabolism in the liver, we analyzed phenotypes of SIK3-deficent mice. Sik3βˆ’/βˆ’ mice have a malnourished the phenotype (i.e., lipodystrophy, hypolipidemia, hypoglycemia, and hyper-insulin sensitivity) accompanied by cholestasis and cholelithiasis. The hypoglycemic and hyper-insulin-sensitive phenotypes may be due to reduced energy storage, which is represented by the low expression levels of mRNA for components of the fatty acid synthesis pathways in the liver. The biliary disorders in Sik3βˆ’/βˆ’ mice are associated with the dysregulation of gene expression programs that respond to nutritional stresses and are probably regulated by nuclear receptors. Retinoic acid plays a role in cholesterol and bile acid homeostasis, wheras ALDH1a which produces retinoic acid, is expressed at low levels in Sik3βˆ’/βˆ’ mice. Lipid metabolism disorders in Sik3βˆ’/βˆ’ mice are ameliorated by the treatment with 9-cis-retinoic acid. In conclusion, SIK3 is a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism, and may alter the size of energy storage in mice

    Cloning and characterization of a Drosophila adenylyl cyclase homologous to mammalian type IX.

    No full text
    A novel Drosophila adenylyl cyclase (AC) was identified by PCR using degenerate primers specific for the known metazoan ACs. The full-length cDNA predicts a protein displaying significant sequence homology with mammalian Type IX AC (AC9). The abundance and size of the message for the Drosophila AC9 homolog (DAC9) changes through development. Biochemical analysis of DAC9 confirms it encodes a functional enzyme which can be activated by forskolin or G protein. Together with the Drosophila Type I AC homolog encoded by the learning and memory gene, rutabaga, the molecular identification of DAC9 demonstrates there is a family of Drosophila AC isoforms reflecting at least part of the diversity of mammalian AC isoforms

    Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor.

    No full text
    Spermatozoa undergo a poorly understood activation process induced by bicarbonate and mediated by cyclic adenosine 3β€²,5β€²-monophosphate (cAMP). It has been assumed that bicarbonate mediates its effects through changes in intracellular pH or membrane potential; however, we demonstrate here that bicarbonate directly stimulates mammalian soluble adenylyl cyclase (sAC) activity in vivo and in vitro in a pH-independent manner. sAC is most similar to adenylyl cyclases from cyanobacteria, and bicarbonate regulation of cyclase activity is conserved in these early forms of life. sAC is also expressed in other bicarbonate-responsive tissues, which suggests that bicarbonate regulation of cAMP signaling plays a fundamental role in many biological systems
    corecore