99 research outputs found
Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes
International audienceThe use of polymer electrolytes instead of liquid organic systems is considered key for enhancing the safety of lithium batteries and may, in addition, enable the transition to high-energy lithium metal anodes. An intrinsic limitation, however, is their rather low ionic conductivity at ambient temperature. Nonetheless, it has been suggested that this might be overcome by decoupling the ion transport and the segmental relaxation of the coordinating polymer. Here, we provide an overview of the different approaches to achieve such decoupling, including a brief recapitulation of the segmental-relaxation dependent ion conduction mechanism, exemplarily focusing on the archetype of polymer electrolytes – polyethylene oxide (PEO). In fact, while the understanding of the underlying mechanisms has greatly improved within recent years, it remains rather challenging to outperform PEO-based electrolyte systems. Nonetheless, it is not impossible, as highlighted by several examples mentioned herein, especially in consideration of the extremely rich polymer chemistry and with respect to the substantial progress already achieved in designing tailored molecules with well-defined nanostructures
Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes
xi+316hlm.;26c
PEO: An immobile solvent?
Despite used for half a century as host for salt-polymer complexes, PEO is still not a fossil and due to its availability, remains regularly used as a reference in solvent-free polymer electrolytes and related electrochemical cells. Often qualified as macromolecular solvent or immobile solvent, its drawbacks (crystallinity, mechanical strength) are well identified. On the other hand, its electrolyte conductivity maxima are considered as the best possible in absence of molecular solvents or ionic liquids. The comparison of PEO/LiTFSI based on raw PEO and ultrafiltrated one, shows unambiguously the impact of unentangled oligomers not only on ionic transport but also on mechanical behavior. Conductivity, cationic transference numbers and storage modulus data go in the same direction and the cationic conductivity (O/Li = 30) is divided by 2, following PEO purification.Jean-Yves Sanchez acknowledges the CONEX Programme, funding received from Universidad Carlos III de Madrid, the European Union's Seventh Framework Programme for research, technological development and demonstration (Grant agreement nº 600371), Spanish Ministry of Economy and Competitiveness (COFUND2013-40258) and Banco Santander. Amadou Thiam acknowledges ANR for his fellowship. Yannick Molméret acknowledges KICINNO Energy for the granting of his post-doc fellowship, in the frame of the project PENLiB coordinated by Prof. Jean-Yves Sanchez
Estudo da formação de ligações cruzadas por irradiação gama em membranas híbridas de Polissulfona Bisfenol-A e sílica precipitada
Production d'hydrogène par reformage à la vapeur et craquage catalytique de bio-huiles sur catalyseurs monolithes
nationa
- …
