12 research outputs found

    PALAEOSEISMOLOGICAL INVESTIGATION OF THE GYRTONI FAULT (THESSALY, CENTRAL GREECE)

    Get PDF
    Two paleoseismological trenches were excavated across the Gyrtoni Fault in NE Thessaly and studied in order to understand the recent seismotectonic behavior of this structure. Twenty five fluvial-colluvial sediment and pottery samples from both the upthrown and the downthrown fault blocks were investigated. Optically Stimulated Luminescence (OSL) dating has been applied to date both sedimentary depositspalaeosoils and pottery fragments. Paleoseismological analysis of the two trenches indicates evidence of three surface faulting events in the time span between 1.42 ±0.06 ka and 5.59 ± 0.13 ka. The observed vertical displacement per event of ~0.50 m corresponds to an Mw 6.5 ± 0.1 earthquake. An average fault slip rate of 0.41 ± 0.01 mm/yr and an average recurrence of 1.39 ± 0.14 ka for earthquakes were estimated. The results documented the activity of the fault and since the return period from the most recent event (minimum age 1.42 ± 0.06 ka) has expired, the possibility for reactivation of this active structure in the near future should be included in Seismic Hazard Assessment

    Active tectonics of the SE Sterea Hellas (Central Greece)

    No full text
    The study area is located in the easternmost sector of the Gulf of Corinth, the Beotia area in SE Central Greece, which is an area with active normal faults located between two major rift structures of Central Greece, the Gulf of Corinth and the South Gulf of Evia. The Gulf of Corinth is an active rift with high rates of uplift and high seismicity, on the contrary the South Gulf of Evia is an area with low rates of uplift, compared with the Gulf of Corinth, moderate seismicity but with strong seismic events. The research is focused on four fault zones, which are described from west to east: the Neochori-Leontari, the Livadostras-Kaparelli, the Erithres-Dafnes and the Kallithea-Asopia fault zones with lengths from ~18 km to ~27 km. The purpose of this study is to analyze the drainage pattern and landscape evolution in order to evaluate the tectonic activity and the fault growth within the actively deformed easternmost sector of the Gulf of Corinth. In order to achieve this aim, a variety of morphotectonic parameters is used additionally with detailed mapping of faults to refine geometry and evolution of fault systems in the study area. In addition, we used G.I.S. techniques to estimate the morphotectonic parameters. In addition, three palaeoseismological trenches were excavated across the Kaparelli fault scarp, in order to understand the seismic history of the Kaparelli normal fault that ruptured during the March 1981 Gulf of Corinth earthquakes. The results of this study shows that vertical motions and tilting associated with normal faulting influence the drainage geometry and its development. All morphotectonic parameters and geomorphological data suggest that the analyzed normal faults are highly active. Although fault zones controlling the Thiva Basin show lateral growth both westwards and eastwards, in several cases the tendency for eastward lateral growth is more predominant. The analyzed trenches expose evidence of at least three events, for the past 10,000 years, with the 1981 event included. Displacements per event on different fault segments within the trenches vary between 0.7 and 1 m. Average vertical displacements associated with interpreted paleoearthquakes at the trench site are in the order of 2.7 m. Average slip rates derived from the trenches is in the order of c. 0,3 mm/yr.Η περιοχής της διατριβής βρίσκεται στη ΝΑ Στερεά Ελλάδα μεταξύ του συστήματος τάφρων-ζωνών, του Κορινθιακού και του Νότιου Ευβοϊκού Κόλπου και η κατανόηση της τεκτονικής εξέλιξής της κρίνεται ιδιαίτερα σημαντική για την κατανόηση της πιθανής αλληλεπίδρασής τους ή ακόμη και της σύνδεσης τους. Για να σκιαγραφηθεί αυτή η σχέση έγινε τεκτονική ανάλυση στη Λεκάνη Θηβών όπου αναγνωρίσθηκαν τέσσερις (4) κύριες ρηξιγενείς ζώνες με μήκη που κυμαίνονται από ~18 έως ~27 km. Το βασικό ‘’εργαλείο’’ της παρούσας μελέτης αποτέλεσε ένα ευρύ φάσμα ‘’τεχνικών’’ της Ενεργού Τεκτονικής και της Τεκτονικής Γεωμορφολογίας. Η ποσοτική μορφοτεκτονική ανάλυση των ρηξιγενών ζωνών με τη χρήση μορφομετρικών δεικτών, επιτρέπει τόσο την ακριβή χαρτογράφηση και ανάλυση των ρηγμάτων όσο και την εκτίμηση του ‘’βαθμού ενεργότητάς’’ τους. Τα όρια των ρηγμάτων και οι ζώνες μεταβίβασης που αναπτύσσονται μεταξύ των ρηγμάτων στις ρηξιγενής ζώνες αναλύθηκαν με την κατασκευή διαγραμμάτων κατανομής της μετατόπισης. Επιπρόσθετα, η διερεύνηση της σχέσης μεταξύ αναγλύφου και λεκανών απορροής στη βάση των ρηξιγενών ζωνών, αποτελεί ένα ακόμα ‘’βήμα’’ για την κατανόηση της εξέλιξης του αναγλύφου των ρηξιγενών ορεογραφικών μετώπων. Τα νεοτεκτονικά στοιχεία που συλλέχθηκαν συμπληρώθηκαν με την εκσκαφή παλαιοσεισμολογικών τομών και την εφαρμογή μεθόδων και αρχών της Παλαιοσεισμολογίας και οδήγησαν στη διερεύνηση της σεισμικής ιστορίας του Ρήγματος Καπαρέλλιου, με γεωλογικές μεθόδους, ώστε να εκφράζεται αυτή με όρους ανάλογους της σεισμολογίας. Η χρήση των Γεωγραφικών Συστημάτων Πληροφοριών (G.I.S) αποτέλεσε ένα ‘’δυναμικό εργαλείο’’ συλλογής, διαχείρισης και απεικόνισης χωρικών δεδομένων που προέκυψαν από την εφαρμογή των παραπάνω μεθόδων στην περιοχή μελέτης. Η ποιοτική και ποσοτική ανάλυση του υδρογραφικού δικτύου της περιοχής μελέτης, έδειξε ότι η εξέλιξη των λεκανών απορροής επηρεάζεται σημαντικά από τη δράση των επιμέρους ρηξιγενών ζωνών, και σε μικρότερο βαθμό και από τις τοπικές γεωλογικές και υδρογεωλογικές συνθήκες της περιοχής. Οι τιμές των μορφοτεκτονικών δεικτών καταδεικνύουν ότι όλες οι ρηξιγενείς ζώνες είναι ενεργές και υπόκεινται σε υψηλό ρυθμό ανύψωσης σύμφωνα με τα διεθνώς παραδεκτά δεδομένα. Η ανάλυση με μεθόδους της Τεκτονικής Γεωμορφολογίας, που πραγματοποιήθηκε στις τέσσερις ρηξιγενής ζώνες της περιοχής μελέτης, οδηγεί στο συμπέρασμα ότι όλες οι ζώνες μπορούν να χαρακτηρισθούν σαν υψηλής ενεργότητας. Από την ανάλυση των αποτελεσμάτων των παλαιοσεισμολογικών τομών διαπιστώθηκε ότι το Βόρειο Ρήγμα Καπαρελλίου παρουσιάζει συνεχή τεκτονική δραστηριότητα. Σε μια περιοχή όπως ο ευρύτερος Αιγιακός χώρος, η μελέτη του αναγλύφου με τη χρήση μορφοτεκτονικών παραμέτρων μπορεί να αποτελέσει οδηγό για την κατανόηση των επιφανειακών επιπτώσεων των σεισμών επί του ανάγλυφου

    Middle–Late Holocene earthquake history of the Gyrtoni Fault, Central Greece: Insight from optically stimulated luminescence (OSL) dating and paleoseismology

    No full text
    The south-dipping Gyrtoni Fault defines the northeastern boundary of the Middle-Late Quaternary Tyrnavos Basin, Central Greece. The recognition and recent tectonic activity of the fault were previously based on mapping, remote sensing analyses and electrical resistivity tomography studies. To understand the Holocene seismotectonic behavior of the Gyrtoni Fault we excavated two paleoseismological trenches. To estimate the timing of past earthquakes using luminescence dating, we obtained twenty five fluvial-colluvial sediment and pottery samples from both the upthrown and the downthrown fault blocks. We applied the Optically Stimulated Luminescence (OSL) dating to coarse grain quartz using the single-aliquot regenerative-dose (SAR) protocol. Our investigations of luminescence characteristics using various tests confirmed the suitability of the material for OSL dating. We found that the estimated OSL ages were internally consistent and agreed well with the available stratigraphical data, archaeological evidence and radiocarbon dates. The performed paleoseismological analysis emphasized the occurrence of three surface faulting events in a time span between 1.42 ± 0.06 ka and 5.59 ± 0.13 ka. Also, we recognized an earlier faulting event (fourth) has been also recognized to be older than 5.59 ± 0.13 ka. The mean throw per event value of 0.50–0.60 m could correspond to a ca. Mw 6.5 earthquake. An average fault slip rate of 0.41 ± 0.01 mm/a and an average recurrence time of 1.39 ± 0.14 ka were also estimated. Our results suggest that the elapsed time from the most recent event (minimum age 1.42 ± 0.06 ka) is comparable with the mean return period

    Late Quaternary Marine Terraces and Tectonic Uplift Rates of the Broader Neapolis Area (SE Peloponnese, Greece)

    No full text
    Marine terraces are geomorphic markers largely used to estimate past sea-level positions and surface deformation rates in studies focused on climate and tectonic processes worldwide. This paper aims to investigate the role of tectonic processes in the late Quaternary evolution of the coastal landscape of the broader Neapolis area by assessing long-term vertical deformation rates. To document and estimate coastal uplift, marine terraces are used in conjunction with Optically Stimulated Luminescence (OSL) dating and correlation to late Quaternary eustatic sea-level variations. The study area is located in SE Peloponnese in a tectonically active region. Geodynamic processes in the area are related to the active subduction of the African lithosphere beneath the Eurasian plate. A series of 10 well preserved uplifted marine terraces with inner edges ranging in elevation from 8 ± 2 m to 192 ± 2 m above m.s.l. have been documented, indicating a significant coastal uplift of the study area. Marine terraces have been identified and mapped using topographic maps (at a scale of 1:5000), aerial photographs, and a 2 m resolution Digital Elevation Model (DEM), supported by extensive field observations. OSL dating of selected samples from two of the terraces allowed us to correlate them with late Pleistocene Marine Isotope Stage (MIS) sea-level highstands and to estimate the long-term uplift rate. Based on the findings of the above approach, a long-term uplift rate of 0.36 ± 0.11 mm a−1 over the last 401 ± 10 ka has been suggested for the study area. The spatially uniform uplift of the broader Neapolis area is driven by the active subduction of the African lithosphere beneath the Eurasian plate since the study area is situated very close (~90 km) to the active margin of the Hellenic subduction zone

    Long-term spatial and temporal shoreline changes of the Evinos River delta, Gulf of Patras, Western Greece

    No full text
    This study deals with the long-term shoreline displacement of the Evinos River delta in Western Greece using various geospatial data sets from different sources. The comparison between the extracted coastlines allowed us to identify segments where the delta progrades and parts of the delta that are being eroded over the periods 1945–1969 and 1969–2015. Coastal area variations giving land losses or gains of the most active sectors of the delta associated with changes in shoreline position were calculated over the periods 1993–2002 and 2002–2018 using Landsat TM satellite images. The results showed that nearly 46% of the Evinos delta is in retreat. Erosion is essentially affecting the eastern deltaic shoreline with retreat rates commonly reaching up to 8 m/yr in places. In addition, the area of the artificially closed pre-1959 mouth of the river has retreated at an average rate of 14 m/yr over the past 57 years. The old natural mouth of the river (depicted in a map of 1885) at Akra Evinou (Cape Evinos) has retreated up to 350 m (5 m/yr) over the last 71 years. West of the active river mouth, mobile elongated features such as sand spits and barriers are formed by deposition of sediment produced by the erosion of the abandoned eastern delta coastline. The main natural cause of the long-term Evinos River delta coastline displacements is the nearshore current activity induced by the dominant incoming wind generated waves. Land loss of the active part of the delta (at rates up to 16,797 m 2/yr) has been recorded over the period 2002–2018. This generalized erosion can be attributed to human activities that include: the construction of a dam in the upper reaches of the catchment that dramatically decreased the suspended sediment concentrations in the delta, the extensive sand and gravel mining in the distributary channel, and a small earth dam constructed at the apex of the delta for irrigation purposes. </p

    Late Quaternary Marine Terraces and Tectonic Uplift Rates of the Broader Neapolis Area (SE Peloponnese, Greece)

    No full text
    Marine terraces are geomorphic markers largely used to estimate past sea-level positions and surface deformation rates in studies focused on climate and tectonic processes worldwide. This paper aims to investigate the role of tectonic processes in the late Quaternary evolution of the coastal landscape of the broader Neapolis area by assessing long-term vertical deformation rates. To document and estimate coastal uplift, marine terraces are used in conjunction with Optically Stimulated Luminescence (OSL) dating and correlation to late Quaternary eustatic sea-level variations. The study area is located in SE Peloponnese in a tectonically active region. Geodynamic processes in the area are related to the active subduction of the African lithosphere beneath the Eurasian plate. A series of 10 well preserved uplifted marine terraces with inner edges ranging in elevation from 8 ± 2 m to 192 ± 2 m above m.s.l. have been documented, indicating a significant coastal uplift of the study area. Marine terraces have been identified and mapped using topographic maps (at a scale of 1:5000), aerial photographs, and a 2 m resolution Digital Elevation Model (DEM), supported by extensive field observations. OSL dating of selected samples from two of the terraces allowed us to correlate them with late Pleistocene Marine Isotope Stage (MIS) sea-level highstands and to estimate the long-term uplift rate. Based on the findings of the above approach, a long-term uplift rate of 0.36 ± 0.11 mm a−1 over the last 401 ± 10 ka has been suggested for the study area. The spatially uniform uplift of the broader Neapolis area is driven by the active subduction of the African lithosphere beneath the Eurasian plate since the study area is situated very close (~90 km) to the active margin of the Hellenic subduction zone

    Assessment of Building Vulnerability to Tsunami Hazard in Kamari (Santorini Island, Greece)

    No full text
    Santorini Island, located in the Southern Aegean Sea, is prone to tsunamis due to its proximity to the Hellenic subduction zone, which is one of the major tsunamigenic areas. Characteristic events, such as those of 365 A.D. and 1303 A.D. greatly affected the coasts of the Eastern Mediterranean Sea, causing significant loss of life and construction damage. Tsunami disaster risk is nowadays significantly higher due to the increased exposure of the buildings as a result of the economic and touristic growth of the Aegean Islands. This study focuses on the eastern coast of Santorini, since its morphology and human presence amplify the necessity to assess its building vulnerability. After conducting an exposure analysis at the settlements of the eastern coast, Kamari poses the highest physical, social and economic relative exposure to any potential natural hazard. The main objective of this research is to quantify the building stock&rsquo;s vulnerability to tsunami hazard. For this purpose, a &ldquo;worst-case run-up scenario&rdquo; was developed. Considering the history of tsunamis in the Aegean Sea, an extreme sea-level rise after a 10 m a.s.l. tsunami run-up, caused by an earthquake with Mw~8.5, was assumed. The relative vulnerability of the buildings in Kamari was calculated via the application of the Papathoma Tsunami Vulnerability Assessment (PTVA-4) analytic model. The results indicate that 423 buildings are within the inundation zone, 58% of which are characterized as highly and very highly vulnerable to tsunamis, revealing the problematic characteristics of the building stock, offering important information to the decision-makers to mitigate a possible future tsunami impact

    Late Quaternary Marine Terraces and Tectonic Uplift Rates of the Broader Neapolis Area (SE Peloponnese, Greece)

    No full text
    Marine terraces are geomorphic markers largely used to estimate past sea-level positions and surface deformation rates in studies focused on climate and tectonic processes worldwide. This paper aims to investigate the role of tectonic processes in the late Quaternary evolution of the coastal landscape of the broader Neapolis area by assessing long-term vertical deformation rates. To document and estimate coastal uplift, marine terraces are used in conjunction with Optically Stimulated Luminescence (OSL) dating and correlation to late Quaternary eustatic sea-level variations. The study area is located in SE Peloponnese in a tectonically active region. Geodynamic processes in the area are related to the active subduction of the African lithosphere beneath the Eurasian plate. A series of 10 well preserved uplifted marine terraces with inner edges ranging in elevation from 8 +/- 2 m to 192 +/- 2 m above m.s.l. have been documented, indicating a significant coastal uplift of the study area. Marine terraces have been identified and mapped using topographic maps (at a scale of 1:5000), aerial photographs, and a 2 m resolution Digital Elevation Model (DEM), supported by extensive field observations. OSL dating of selected samples from two of the terraces allowed us to correlate them with late Pleistocene Marine Isotope Stage (MIS) sea-level highstands and to estimate the long-term uplift rate. Based on the findings of the above approach, a long-term uplift rate of 0.36 +/- 0.11 mm a(-1) over the last 401 +/- 10 ka has been suggested for the study area. The spatially uniform uplift of the broader Neapolis area is driven by the active subduction of the African lithosphere beneath the Eurasian plate since the study area is situated very close (90 km) to the active margin of the Hellenic subduction zone

    Geomorphic Evolution of the Lilas River Fan Delta (Central Evia Island, Greece)

    No full text
    This paper presents the results of geomorphological investigations carried out on the Lilas River fan delta in central Evia Isl., Greece. A geomorphological map has been prepared using Digital Elevation Model analysis, aerial photos and Google Earth image interpretation, a reliable map of 1846, and extensive fieldwork. The Holocene sequence stratigraphy of the fan delta has been studied based on profiles of seven deep cores drilled by the municipal authorities. Two additional shallow boreholes were drilled with a portable drilling set and collected samples were analyzed using micropaleontological and grain size analysis methods while four sediment samples were dated using optically stimulated luminescence (OSL) techniques. During the early Holocene, most of the fan delta plain was a shallow marine environment. Between 4530 &plusmn; 220 and 3600 &plusmn; 240 years BP the depositional environment at the area of Nea Lampsakos changed from shallow marine to a lower energy lagoonal one. The main distributary changed its course several times leading to the building and subsequent abandonment of five fan delta lobes, through which the fan delta advanced during the late Holocene. The eastern part of the Kampos abandoned lobe is retreating with a maximum mean rate of &minus;0.94 m/year for the period 1945&ndash;2009, whereas the presently active mouth of the river and its immediate surrounds are prograding with a mean rate of about +3.2 m/year

    PALAEOSEISMOLOGICAL INVESTIGATION OF THE GYRTONI FAULT (THESSALY, CENTRAL GREECE)

    Get PDF
    Two paleoseismological trenches were excavated across the Gyrtoni Fault in NE Thessaly and studied in order to understand the recent seismotectonic behavior of this structure. Twenty five fluvial-colluvial sediment and pottery samples from both the upthrown and the downthrown fault blocks were investigated. Optically Stimulated Luminescence (OSL) dating has been applied to date both sedimentary depositspalaeosoils and pottery fragments. Paleoseismological analysis of the two trenches indicates evidence of three surface faulting events in the time span between 1.42 ±0.06 ka and 5.59 ± 0.13 ka. The observed vertical displacement per event of ~0.50 m corresponds to an Mw 6.5 ± 0.1 earthquake. An average fault slip rate of 0.41 ± 0.01 mm/yr and an average recurrence of 1.39 ± 0.14 ka for earthquakes were estimated. The results documented the activity of the fault and since the return period from the most recent event (minimum age 1.42 ± 0.06 ka) has expired, the possibility for reactivation of this active structure in the near future should be included in Seismic Hazard Assessment
    corecore