37 research outputs found

    Valley Polarization-Electric Dipole Interference and Nonlinear Chiral Selection Rules in Monolayer WSe2_2

    Full text link
    In monolayer transition metal dichalcogenides time-reversal symmetry, combined with space-inversion symmetry, defines the spin-valley degree of freedom. As such, engineering and control of time-reversal symmetry by optical or magnetic fields constitutes the foundation of valleytronics. Here, we propose a new approach for the detection of broken time-reversal symmetry and valley polarization in monolayer WSe2_2 based on second harmonic generation. Our method can selectively and simultaneously generate and detect a valley polarization at the ±K\pm K valleys of transition metal dichalcogenides at room temperature. Furthermore, it allows to measure the interference between the real and imaginary parts of the intrinsic (electric dipole) and valley terms of the second order nonlinear susceptibility. This work demonstrates the potential and unique capabilities of nonlinear optics as a probe of broken time-reversal symmetry and as a tool for ultrafast and non-destructive valleytronic operations.Comment: 27 pages 6 figure

    Interlayer exciton mediated second harmonic generation in bilayer MoS2

    Full text link
    Second harmonic generation (SHG) is a non-linear optical process, where two photons coherently combine into one photon of twice their energy. Efficient SHG occurs for crystals with broken inversion symmetry, such as transition metal dichalcogenide monolayers. Here we show tuning of non-linear optical processes in an inversion symmetric crystal. This tunability is based on the unique properties of bilayer MoS2, that shows strong optical oscillator strength for the intra- but also inter-layer exciton resonances. As we tune the SHG signal onto these resonances by varying the laser energy, the SHG amplitude is enhanced by several orders of magnitude. In the resonant case the bilayer SHG signal reaches amplitudes comparable to the off-resonant signal from a monolayer. In applied electric fields the interlayer exciton energies can be tuned due to their in-built electric dipole via the Stark effect. As a result the interlayer exciton degeneracy is lifted and the bilayer SHG response is further enhanced by an additional two orders of magnitude, well reproduced by our model calculations.Comment: main paper and supplemen

    Kapitza-resistance-like exciton dynamics in atomically flat MoSe2_{2}-WSe2_{2} lateral heterojunction

    Full text link
    Being able to control the neutral excitonic flux is a mandatory step for the development of future room-temperature two-dimensional excitonic devices. Semiconducting Monolayer Transition Metal Dichalcogenides (TMD-ML) with extremely robust and mobile excitons are highly attractive in this regard. However, generating an efficient and controlled exciton transport over long distances is a very challenging task. Here we demonstrate that an atomically sharp TMD-ML lateral heterostructure (MoSe2_{2}-WSe2_{2}) transforms the isotropic exciton diffusion into a unidirectional excitonic flow through the junction. Using tip-enhanced photoluminescence spectroscopy (TEPL) and a modified exciton transfer model, we show a discontinuity of the exciton density distribution on each side of the interface. We introduce the concept of exciton Kapitza resistance, by analogy with the interfacial thermal resistance referred to as Kapitza resistance. By comparing different heterostructures with or without top hexagonal boron nitride (hBN) layer, we deduce that the transport properties can be controlled, over distances far greater than the junction width, by the exciton density through near-field engineering and/or laser power density. This work provides a new approach for controlling the neutral exciton flow, which is key toward the conception of excitonic devices

    Exciton spectroscopy and unidirectional transport in MoSe2-WSe2 lateral heterostructures encapsulated in hexagonal boron nitride

    Get PDF
    Chemical vapor deposition (CVD) allows lateral edge epitaxy of transition metal dichalcogenide heterostructures. Critical for carrier and exciton transport is the material quality and the nature of the lateral heterojunction. Important details of the optical properties were inaccessible in as-grown heterostructure samples due to large inhomogeneous broadening of the optical transitions. Here we perform optical spectroscopy of CVD grown MoSe2_2-WSe2_2 lateral heterostructures, encapsulated in hBN. Photoluminescence (PL), reflectance contrast and Raman spectroscopy reveal optical transition linewidths similar to high quality exfoliated monolayers, while PL imaging experiments uncover the effective excitonic diffusion length of both materials. The typical extent of the covalently bonded MoSe2_2-WSe2_2 heterojunctions is 3 nm measured by scanning transmission electron microscopy (STEM). Tip-enhanced, sub-wavelength optical spectroscopy mapping shows the high quality of the heterojunction which acts as an excitonic diode resulting in unidirectional exciton transfer from WSe2_2 to MoSe2_2

    Confinement of long-lived interlayer excitons in WS 2 /WSe 2 heterostructures

    Get PDF
    Abstract: Interlayer excitons in layered materials constitute a novel platform to study many-body phenomena arising from long-range interactions between quantum particles. Long-lived excitons are required to achieve high particle densities, to mediate thermalisation, and to allow for spatially and temporally correlated phases. Additionally, the ability to confine them in periodic arrays is key to building a solid-state analogue to atoms in optical lattices. Here, we demonstrate interlayer excitons with lifetime approaching 0.2 ms in a layered-material heterostructure made from WS2 and WSe2 monolayers. We show that interlayer excitons can be localised in an array using a nano-patterned substrate. These confined excitons exhibit microsecond-lifetime, enhanced emission rate, and optical selection rules inherited from the host material. The combination of a permanent dipole, deterministic spatial confinement and long lifetime places interlayer excitons in a regime that satisfies one of the requirements for simulating quantum Ising models in optically resolvable lattices

    Chemical Vapor Deposition of High‐Optical‐Quality Large‐Area Monolayer Janus Transition Metal Dichalcogenides

    Get PDF
    One‐pot chemical vapor deposition (CVD) growth of large‐area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermodynamic‐equilibrium‐driven exchange of the bottom Se atoms of the initially grown MoSe₂ single crystals on gold foils with S atoms. The growth process is characterized by complementary experimental techniques including Raman and X‐ray photoelectron spectroscopy, transmission electron microscopy, and the growth mechanisms are rationalized by first principle calculations. The remarkably high optical quality of the synthesized Janus monolayers is demonstrated by optical and magneto‐optical measurements which reveal the strong exciton–phonon coupling and enable an exciton g‐factor of −3.3
    corecore