2,455 research outputs found

    xPF: Packet Filtering for Low-Cost Network Monitoring

    Get PDF
    The ever-increasing complexity in network infrastructures is making critical the demand for network monitoring tools. While the majority of network operators rely on low-cost open-source tools based on commodity hardware and operating systems, the increasing link speeds and complexity of network monitoring applications have revealed inefficiencies in the existing software organization, which may prohibit the use of such tools in high-speed networks. Although several new architectures have been proposed to address these problems, they require significant effort in re-engineering the existing body of applications. We present an alternative approach that addresses the primary sources of inefficiency without significantly altering the software structure. Specifically, we enhance the computational model of the Berkeley packet filter (BPF) to move much of the processing associated with monitoring into the kernel, thereby removing the overhead associated with context switching between kernel and applications. The resulting packet filter, called xPF, allows new tools to be more efficiently implemented and existing tools to be easily optimized for high-speed networks. We present the design and implementation of xPF as well as several example applications that demonstrate the efficiency of our approach

    An accessory middle scalene muscle causing thoracic outlet syndrome

    Get PDF
    The aim of our study is to present a very rare accessory middle scalene muscle, leading to thoracic outlet syndrome. In particular, a muscular bundle was discovered on a male cadaver connecting the middle portion of the middle scalene muscle with the anterior scalene muscle insertion to Lisfranc`s tubercle. This triangular accessory muscle and, especially, its sharp medial border compressed the middle and lower trunk of the brachial plexus and the subclavian artery. This anomaly is of great importance because it emphasises the fact that it is not primarily the anterior scalene muscle that produces symptoms of thoracic outlet syndrome but the anterior displacement of the middle scalene muscle or its accessory muscular bands. We also present the relative international literature and the clinical significance of our finding

    Investigating the value of radiomics stemming from DSC quantitative biomarkers in IDH mutation prediction in gliomas

    Get PDF
    Objective: This study aims to assess the value of biomarker based radiomics to predict IDH mutation in gliomas. The patient cohort consists of 160 patients histopathologicaly proven of primary glioma (WHO grades 2–4) from 3 different centers. Methods: To quantify the DSC perfusion signal two different mathematical modeling methods were used (Gamma fitting, leakage correction algorithms) considering the assumptions about the compartments contributing in the blood flow between the extra- and intra vascular space. Results: The Mean slope of increase (MSI) and the K1 parameter of the bidirectional exchange model exhibited the highest performance with (ACC 74.3% AUROC 74.2%) and (ACC 75% AUROC 70.5%) respectively. Conclusion: The proposed framework on DSC-MRI radiogenomics in gliomas has the potential of becoming a reliable diagnostic support tool exploiting the mathematical modeling of the DSC signal to characterize IDH mutation status through a more reproducible and standardized signal analysis scheme for facilitating clinical translation

    WARDOG: Awareness detection watchbog for Botnet infection on the host device

    Get PDF
    Botnets constitute nowadays one of the most dangerous security threats worldwide. High volumes of infected machines are controlled by a malicious entity and perform coordinated cyber-attacks. The problem will become even worse in the era of the Internet of Things (IoT) as the number of insecure devices is going to be exponentially increased. This paper presents WARDOG – an awareness and digital forensic system that informs the end-user of the botnet’s infection, exposes the botnet infrastructure, and captures verifiable data that can be utilized in a court of law. The responsible authority gathers all information and automatically generates a unitary documentation for the case. The document contains undisputed forensic information, tracking all involved parties and their role in the attack. The deployed security mechanisms and the overall administration setting ensures non-repudiation of performed actions and enforces accountability. The provided properties are verified through theoretic analysis. In simulated environment, the effectiveness of the proposed solution, in mitigating the botnet operations, is also tested against real attack strategies that have been captured by the FORTHcert honeypots, overcoming state-of-the-art solutions. Moreover, a preliminary version is implemented in real computers and IoT devices, highlighting the low computational/communicational overheads of WARDOG in the field
    • …
    corecore