14 research outputs found

    Unpublished Mediterranean records of marine alien and cryptogenic species

    Get PDF
    Good datasets of geo-referenced records of alien species are a prerequisite for assessing the spatio-temporal dynamics of biological invasions, their invasive potential, and the magnitude of their impacts. However, with the exception of first records on a country level or wider regions, observations of species presence tend to remain unpublished, buried in scattered repositories or in the personal databases of experts. Through an initiative to collect, harmonize and make such unpublished data for marine alien and cryptogenic species in the Mediterranean Sea available, a large dataset comprising 5376 records was created. It includes records of 239 alien or cryptogenic taxa (192 Animalia, 24 Plantae, 23 Chromista) from 19 countries surrounding the Mediterranean Sea. In terms of records, the most reported Phyla in descending order were Chordata, Mollusca, Chlorophyta, Arthropoda, and Rhodophyta. The most recorded species was Caulerpa cylindracea, followed by Siganus luridus, Magallana sp. (cf. gigas or angulata) and Pterois miles. The dataset includes records from 1972 to 2020, with the highest number of records observed in 2018. Among the records of the dataset, Dictyota acutiloba is a first record for the Mediterranean Sea. Nine first country records are also included: the alga Caulerpa taxifolia var. distichophylla, the cube boxfish Ostracion cubicus, and the cleaner shrimp Urocaridella pulchella from Israel; the sponge Paraleucilla magna from Libya and Slovenia; the lumpfish Cyclopterus lumpus from Cyprus; the bryozoan Celleporaria vermiformis and the polychaetes Prionospio depauperata and Notomastus aberans from Malta

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia).peer-reviewe

    Συγκριτική αξιολόγηση επτά Δεικτών Ποιότητας Νερού (WQIs) βάσει μετρήσεων σε επιφανειακά υδατικά συστήματα της Ελλάδας

    No full text
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Επιστήμη και Τεχνολογία Υδατικών Πόρων

    Comparative Assessment of Various Water Quality Indices (WQIs) in Polyphytos Reservoir-Aliakmon River, Greece

    No full text
    The present study attempts to examine the comparative performance of seven different WQIs, as they were computed for Polyphytos Reservoir-Aliakmon River in Greece, based on water quality monitoring data for the period between June 2004 and May 2005. The WQIs applied were: Prati’s Index of Pollution, Bhargava’s Index, Oregon WQI, Dinius’ Index, CCME WQI, NSF WQI and the Weighted Arithmetic WQI. Significant discrepancies were observed in classification results between the different methodologies. Among others, it was concluded that NSF and Bhargava indices classify the reservoir in higher quality classes, Prati’s and Dinius indices in medium, while CCME and Oregon in lower quality categories

    Potential of Two SAR-Based Flood Mapping Approaches in Supporting an Integrated 1D/2D HEC-RAS Model

    No full text
    This study investigates the potential of Sentinel-1 data in assisting flood modeling procedures. Two different synthetic aperture radar (SAR) processing methodologies, one simplified based on single-flood image thresholding and one automatic based on SAR statistical temporal analysis, were exploited to delineate the flooding caused by a storm event that took place in Spercheios River, Central Greece. The storm event was simulated by coupling a HEC-HMS hydrologic model and an integrated 1D/2D HEC-RAS hydraulic model. Both SAR methodologies were compared to each other and also used as a reference to test the sensitivity of the hydraulic model in the variation of upstream discharge and roughness coefficient. Model sensitivity was investigated with respect to the change in the derived inundation extent and three additional metrics: the Critical Success Index (CSI), the Hit Rate (HR), and the False Alarm Ratio (FAR). The model response was found to be affected in the following order: by the upstream inflow, and by the variation of the roughness coefficient in the main channel and in the land use “cultivated crops”. The discrepancies observed between model- and SAR-derived inundation products are associated with the uncertainty accompanying the SAR processing and the utilized satellite data itself, the underlying topography, and the structural uncertainty inherent in the modeling procedure. Regarding the SAR methodologies tested, the second one (FLOMPY approach) proved to be more suitable, yielding a more coherent and realistic flooded area. According to the applied metrics and considering as reference the FLOMPY result, model performance ranged between 22–27.5% (CSI), 36.9–60.4% (HR), and 62.1–68.2% (FAR)

    Relationship of Rainfall and Flood Return Periods through Hydrologic and Hydraulic Modeling

    No full text
    In order to examine the relationship between rainfall return periods and flood return periods, the design storm approach is compared to the rainfall–runoff continuous simulation and flood frequency analysis approach. The former was based on rainfall frequency analysis and event-based hydrological simulations, while the latter was based on continuous hydrological simulations and flood frequency analysis. All hydrological simulations were undertaken employing the HEC-HMS software. For the rainfall frequency analysis, the Generalized Extreme Value (GEV) probability distribution was used. For the flood frequency analysis, both the Extreme Value Type I (Gumbel) and GEV theoretical distributions were used and compared to each other. Flood hazard (inundation depth, flow velocities and flood extent) was estimated based on hydrodynamic simulations employing the HEC-RAS software. The study area was the Pineios catchment, upstream of Larissa city, Greece. The results revealed that the assumption of equivalent return periods of rainfall and discharge is not valid for the study area. For instance, a 50-year return period flood corresponds to a rainfall return period of about 110 years. Even if flow measurements are not available, continuous simulation based on re-analysis datasets and flood frequency analysis may be alternatively used

    Relationship of Rainfall and Flood Return Periods through Hydrologic and Hydraulic Modeling

    No full text
    In order to examine the relationship between rainfall return periods and flood return periods, the design storm approach is compared to the rainfall–runoff continuous simulation and flood frequency analysis approach. The former was based on rainfall frequency analysis and event-based hydrological simulations, while the latter was based on continuous hydrological simulations and flood frequency analysis. All hydrological simulations were undertaken employing the HEC-HMS software. For the rainfall frequency analysis, the Generalized Extreme Value (GEV) probability distribution was used. For the flood frequency analysis, both the Extreme Value Type I (Gumbel) and GEV theoretical distributions were used and compared to each other. Flood hazard (inundation depth, flow velocities and flood extent) was estimated based on hydrodynamic simulations employing the HEC-RAS software. The study area was the Pineios catchment, upstream of Larissa city, Greece. The results revealed that the assumption of equivalent return periods of rainfall and discharge is not valid for the study area. For instance, a 50-year return period flood corresponds to a rainfall return period of about 110 years. Even if flow measurements are not available, continuous simulation based on re-analysis datasets and flood frequency analysis may be alternatively used

    Experiments on Pilot-Scale Constructed Floating Wetlands Efficiency in Removing Agrochemicals

    No full text
    The efficiency of constructed floating wetlands (CFWs) in their ability to remove agrochemicals (nutrients and pesticides) is here investigated in a series of pilot-scale systems. Four experimental CFWs were designed and constructed; three of them were planted with the aquatic plant species Lemna minor, Azolla pinnata and Eichhornia crassipes. The fourth did not contain any plants and was used as the control. The aim of the study was to evaluate the efficiency of CFW containing aquatic macrophytes in the reduction of pesticides and nutrients, under field conditions. The CFWs operated continuously from May 2021 to September 2021, and their removal efficiencies of nitrogen and phosphorus ions, and five commonly used pesticides were examined. The CFW systems were fed daily with agricultural wastewater which was prepared by mixing a fertilizer and predetermined doses of pesticides. The hydraulic residence time was kept at 14 days. Samples were collected on a weekly basis from both the influent and the effluent of each experimental tank, and were subsequently analyzed in the laboratory. HPLC-DAD and Ion Chromatography were implemented for sample analysis following a very simple sample preparation. Reductions for nutrient ranged from no reduction to 100% removal, whereas for pesticides these varied from no reduction to 98.8% removal, indicating that these systems can be used as efficient and low-cost pollution control technologies for agrochemical wastewater treatment. Significant reduction for certain pesticides was also observed in the algae control tank, thus, proving the efficiency of algae in organic pollution reduction, and recognizing the limitations of aquatic plant use in decontamination
    corecore