1,139 research outputs found
Paral·lelització d’algorismes de processat digital mitjançant targetes GPU
The objective of this paper is to program the DFT algorithm, which is widely used in signal processing, using the CUDA language developed by Nvidia. Additionally, the time needed to process the signal will be compared to the same algorithm written in C language. This paper is aimed to the utilization of Graphic Processing Units (GPU) to parallelize calculations.L’objectiu del següent treball és programar l’algorisme de la DFT, àmpliament
utilitzat en processat de senyal, en el llenguatge CUDA desenvolupat per
Nvidia. A més comparar els temps de processament necessaris amb el mateix
algorisme programat en C. El treball està orientat a la utilització de targetes
gràfiques (GPU) per a realitzar processat de senyal en paral·lel
Sparse Representation of Astronomical Images
Sparse representation of astronomical images is discussed. It is shown that a
significant gain in sparsity is achieved when particular mixed dictionaries are
used for approximating these types of images with greedy selection strategies.
Experiments are conducted to confirm: i)Effectiveness at producing sparse
representations. ii)Competitiveness, with respect to the time required to
process large images.The latter is a consequence of the suitability of the
proposed dictionaries for approximating images in partitions of small
blocks.This feature makes it possible to apply the effective greedy selection
technique Orthogonal Matching Pursuit, up to some block size. For blocks
exceeding that size a refinement of the original Matching Pursuit approach is
considered. The resulting method is termed Self Projected Matching Pursuit,
because is shown to be effective for implementing, via Matching Pursuit itself,
the optional back-projection intermediate steps in that approach.Comment: Software to implement the approach is available on
http://www.nonlinear-approx.info/examples/node1.htm
- …
