8 research outputs found

    Metodo e Kit per il recupero di piombo metallico da componenti di un accumulatore esausto al piombo-acido

    No full text
    il metodo consente di ripristinare le piastre presenti nelle batterie al piombo acido esauste per recuperare il piombo presente e per riutilizzarle direttamente in nuove batteri

    Ultrafast lead-acid battery with nanostructured Pb and PbO2 electrodes

    No full text
    Lead-acid batteries (LABs) are still extensively used in the field of energy storage, owing to a well-known and reliable technology. LABs can deliver high power and store energy for a very long time. In addition, they are reliable and easy to produce. The raw materials for their manufacture are practically unlimited, and about 95% of the materials can be recovered and reused. However, the lower specific energy storage (about 30-40 Wh kg-1), in comparison with other storage systems, limits their use in the most emerging and challenging applications, like electrical mobility, due to the high atomic weight of lead [1]. One of the principal limitations in the use of LABs in electric vehicles (EV) is related to the inadequacy of the negative plates in accepting high charge/discharge currents. Besides, LABs operate in EVs at high rate partial state-of-charge, which leads to rapid sulphation of the negative plates. Many approaches were proposed in order to overcome these problems and make LABs suitable for emerging applications. A possible approach is based on electrodes with nanostructured active materials, which are progressively emerging as an alternative to the conventional plates because their high aspect ratio and consequent high superficial area allow to fabricate LABs with high specific energy and power density. We have developed template electrodeposition as an easy and direct technique for fabrication of nanostructured electrodes, with very large active area, consisting of PbO2 and Pb [2-3]. Both active materials (Pb and PbO2) were electrodeposited using a nonporous template to obtain the regular arrays of nanowires shown in Figure 1, well attached to a compact film of the same material, acting as a current collector and mechanical support of the nanostructures. Nanostructured PbO2 and Pb electrodes were assembled and tested using aqueous 5 M H2SO4 solution in a zero gap configuration, and was discharged up to 90% of the gravimetric capacity to a cut-off voltage of 1.2 V. In comparison to commercial LABs, which usually deliver about 30 mAh/g for only 15-20 cycles at 1C rate, our batteries are able to charge and discharge at very high rate without fading up to 1500 cycles with a cycling efficiency of about 90%. Besides, nanostructured electrodes show better performances without time-consuming curing and formation process. These performances are attributable to their large surface area (about 70 times higher than the geometrical one), leading to a new LAB with high specific energy and power density. Another interesting finding is the ability of our batteries to be cycled up to 30C [4]

    Template electrodeposition and characterization of nanostructured Pb as a negative electrode for lead-acid battery

    No full text
    Despite Lead Acid Battery (LAB) is the oldest electrochemical energy storage system, diffusion in the emerging sectors of technological interest is inhibited by its drawbacks. The principal ones are low energy density and negative plate sulphating on high rate discharging. In this work, it is shown the possibility of overcoming such drawbacks by using nanostructured lead as a negative electrode. Lead nanowires (NWs) were fabricated by electrochemical deposition in template, which is an easy, cheap, and easily scalable process. Their morphology and crystal structure have been characterized by electron microscopy and X-ray diffraction, respectively. An electrochemical cell simulating LAB has been assembled with PbO2 as a counter electrode and an AGM separator, both from commercial battery. Cycling tests were conducted at 10C-rate, setting the cut-off voltage on discharging at 1.2 V. For comparison, also cycling tests at 1C-rate have been carried out, in otherwise identical conditions. At both C-rates, performances in terms of cycling efficiency and lifetime were found a lot better than those of current LABs. The high porosity formed under cycling at 10C-rate provides a reliable explanation of the results

    Dispositivo elettrolizzatore migliorato

    No full text
    Un dispositivo di elettrolizzatore migliorato per la produzione elettrolitica di idrogeno allo stato gassos

    High-Performance Lead-Acid Batteries Enabled by Pb and PbO2 Nanostructured Electrodes: Effect of Operating Temperature

    No full text
    Lead-acid batteries are now widely used for energy storage, as result of an established and reliable technology. In the last decade, several studies have been carried out to improve the performance of this type of batteries, with the main objective to replace the conventional plates with innovative electrodes with improved stability, increased capacity and a larger active surface. Such studies ultimately aim to improve the kinetics of electrochemical conversion reactions at the electrode-solution interface and to guarantee a good electrical continuity during the repeated charge/discharge cycles. To achieve these objectives, our contribution focuses on the employment of nanostructured electrodes. In particular, we have obtained nanostructured electrodes in Pb and PbO2 through electrosynthesis in a template consisting of a nanoporous polycarbonate membrane. These electrodes are characterized by a wider active surface area, which allows for a better use of the active material, and for a consequent increased specific energy compared to traditional batteries. In this research, the performance of lead-acid batteries with nanostructured electrodes was studied at 10 C at temperatures of 25, −20 and 40 °C in order to evaluate the efficiency and the effect of temperature on electrode morphology. The batteries were assembled using both nanostructured electrodes and an AGM-type separator used in commercial batteries
    corecore