262 research outputs found

    Cosmic Galaxy-IGM HI Relation at z23{\it{z}}\sim 2-3 Probed in the COSMOS/UltraVISTA 1.61.6 deg2^2 Field

    Full text link
    We present spatial correlations of galaxies and IGM HI in the COSMOS/UltraVISTA 1.62 deg2^2 field. Our data consist of 13,415 photo-zz galaxies at z23z\sim2-3 with Ks<23.4K_s<23.4 and the Lyα\alpha forest absorptions in the background quasar spectra selected from SDSS data with no signature of damped Lyα\alpha system contamination. We estimate a galaxy overdensity δgal\delta_{gal} in an impact parameter of 2.5 pMpc, and calculate the Lyα\alpha forest fluctuations δF\delta_{\langle F\rangle} whose negative values correspond to the strong Lyα\alpha forest absorptions. We identify weak evidence of an anti-correlation between δgal\delta_{gal} and δF\delta_{\langle F\rangle} with a Spearman's rank correlation coefficient of 0.39-0.39 suggesting that the galaxy overdensities and the Lyα\alpha forest absorptions positively correlate in space at the 90%\sim90\% confidence level. This positive correlation indicates that high-zz galaxies exist around an excess of HI gas in the Lyα\alpha forest. We find four cosmic volumes, dubbed AobsA_{obs}-DobsD_{obs}, that have extremely large (small) values of δgal0.8\delta_{gal} \simeq0.8 (1-1) and δF\delta_{\langle F\rangle} 0.1\simeq0.1 (0.4-0.4), three out of which, BobsB_{obs}-DobsD_{obs}, significantly depart from the correlation, and weaken the correlation signal. We perform cosmological hydrodynamical simulations, and compare with our observational results. Our simulations reproduce the correlation, agreeing with the observational results. Moreover, our simulations have model counterparts of AobsA_{obs}-DobsD_{obs}, and suggest that the observations pinpoint, by chance, a galaxy overdensity like a proto-cluster, gas filaments lying on the sightline, a large void, and orthogonal low-density filaments. Our simulations indicate that the significant departures of BobsB_{obs}-DobsD_{obs} are produced by the filamentary large-scale structures and the observation sightline effects.Comment: 14 pages, 12 figures. Accepted for publication in Ap

    Photonic-crystal lasers with high-quality narrow-divergence symmetric beams and their application to LiDAR

    Get PDF
    Light detection and ranging (LiDAR) is a key technology for smart mobility of robots, agricultural and construction machines, and autonomous vehicles. However, current LiDAR systems often rely on semiconductor lasers with low-quality, large-divergence, and asymmetric beams, requiring high-precision integration of complicated lens systems to reshape the beam. Also, due to the broad linewidth and the large temperature dependence of their lasing spectrum, a bandpass filter with broad bandwidth must be used in front of the detector, so the detected signal is affected by noise from background light such as sunlight. These critical issues limit the performance, compactness, affordability, and reliability of the LiDAR systems. Photonic-crystal surface-emitting lasers (PCSELs) have attracted much attention as novel semiconductor lasers that can solve the issues of conventional semiconductor lasers owing to their capability of high-quality, very-narrow-divergence, and symmetric beam operation supported by broad-area band-edge resonance in their two-dimensional photonic crystal. In this paper, we show the progress and the state of the art of broad-area coherent PCSELs and their application to a time-of-flight (ToF) LiDAR system. We first review the progress of PCSELs made so far. Next, we show recent progress based on PCSELs with a double-lattice structure that enables higher-power and narrower-divergence operation while keeping a symmetric beam shape. By optimizing the double-lattice photonic crystal and the reflective properties of a backside distributed Bragg reflector (DBR), we achieve a high peak power of 10 W while maintaining a nearly diffraction-limited beam divergence of ∼0.1° (FWHM) from a 500 µm diameter resonator. Using this PCSEL, we construct a LiDAR system that uses no external lens system in its light source and demonstrate highly spatially resolved ToF sensing (measurement range of ∼20 m), which is appropriate for autonomous robots and factory automation

    High-brightness scalable continuous-wave single-mode photonic-crystal laser

    Get PDF
    フォトニック結晶レーザーの高輝度単一モード連続動作の実現 --スマート製造を始めとする各種分野のゲームチェンジに向けて--. 京都大学プレスリリース. 2023-06-15.Realizing large-scale single-mode, high-power, high-beam-quality semiconductor lasers, which rival (or even replace) bulky gas and solid-state lasers, is one of the ultimate goals of photonics and laser physics. Conventional high-power semiconductor lasers, however, inevitably suffer from poor beam quality owing to the onset of many-mode oscillation, and, moreover, the oscillation is destabilized by disruptive thermal effects under continuous-wave (CW) operation. Here, we surmount these challenges by developing large-scale photonic-crystal surface-emitting lasers with controlled Hermitian and non-Hermitian couplings inside the photonic crystal and a pre-installed spatial distribution of the lattice constant, which maintains these couplings even under CW conditions. A CW output power exceeding 50 W with purely single-mode oscillation and an exceptionally narrow beam divergence of 0.05° has been achieved for photonic-crystal surface-emitting lasers with a large resonant diameter of 3 mm, corresponding to over 10, 000 wavelengths in the material. The brightness, a figure of merit encapsulating both output power and beam quality, reaches 1 GW cm⁻² sr⁻¹, which rivals those of existing bulky lasers. Our work is an important milestone toward the advent of single-mode 1-kW-class semiconductor lasers, which are expected to replace conventional, bulkier lasers in the near future

    Demonstration of periodic nanostructure formation with less ablation by double-pulse laser irradiation on titanium

    Get PDF
    By pairing femtosecond laser pulses (duration ∼40 fs and central wavelength ∼810 nm) at an appropriate time interval, a laser-induced periodic surface structure (LIPSS) is formed with much less ablation than one formed with a single pulse. On a titanium plate, a pair of laser pulses with fluences of 70 and 140 mJ/cm² and a rather large time interval (>10 ps) creates a LIPSS with an interspace of 600 nm, the same as that formed by a single pulse of 210 mJ/cm², while the double pulse ablates only 4 nm, a quarter of the ablation depth of a single pulse

    Photometric IGM tomography with Subaru/HSC: the large-scale structure of Lyα emitters and IGM transmission in the COSMOS field at z ∼ 5

    Get PDF
    We present a novel technique called “photometric IGM tomography” to map the intergalactic medium (IGM) at z ≃ 4.9 in the COSMOS field. It utilizes deep narrow-band (NB) imaging to photometrically detect faint Lyα forest transmission in background galaxies across the Subaru/Hyper-Suprime Cam (HSC)’s 1.8sq.deg field of view and locate Lyα emitters (LAEs) in the same cosmic volume. Using ultra-deep HSC images and Bayesian spectral energy distribution fitting, we measure the Lyα forest transmission at z ≃ 4.9 along a large number (140) of background galaxies selected from the DEIMOS10k spectroscopic catalogue at 4.98 < z < 5.89 and the SILVERRUSH LAEs at z ≃ 5.7. We photometrically measure the mean Lyα forest transmission and achieve a result consistent with previous measurements based on quasar spectra. We also measure the angular LAE-Lyα forest cross-correlation and Lyα forest auto-correlation functions and place an observational constraint on the large-scale fluctuations of the IGM around LAEs at z ≃ 4.9. Finally, we present the reconstructed 2D tomographic map of the IGM, co-spatial with the large-scale structure of LAEs, at a transverse resolution of 11h−1cMpc across 140h−1cMpc in the COSMOS field at z ≃ 4.9. We discuss the observational requirements and the potential applications of this new technique for understanding the sources of reionization, quasar radiative history, and galaxy-IGM correlations across z ∼ 3 − 6. Our results represent the first proof-of-concept of photometric IGM tomography, offering a new route to examining early galaxy evolution in the context of the large-scale cosmic web from the epoch of reionization to cosmic noon

    Human Urocortin 2, a Corticotropin-Releasing Factor (CRF) 2

    Full text link

    Chemogenetic dissection of the primate prefronto-subcortical pathways for working memory and decision-making

    Get PDF
    「何を買うんだっけ」と「どれにしよう」を処理する2つの脳回路を明らかに --霊長類の生体脳で神経経路を可視化・操作する技術で解明、高次脳機能の理解へ大きく前進--. 京都大学プレスリリース. 2021-06-24.The primate prefrontal cortex (PFC) is situated at the core of higher brain functions via neural circuits such as those linking the caudate nucleus and mediodorsal thalamus. However, the distinctive roles of these prefronto-subcortical pathways remain elusive. Combining in vivo neuronal projection mapping with chemogenetic synaptic silencing, we reversibly dissected key pathways from dorsolateral part of the PFC (dlPFC) to the dorsal caudate (dCD) and lateral mediodorsal thalamus (MDl) individually in single monkeys. We found that silencing the bilateral dlPFC-MDl projections, but not the dlPFC-dCD projections, impaired performance in a spatial working memory task. Conversely, silencing the unilateral dlPFC-dCD projection, but not the unilateral dlPFC-MDl projection, altered preference in a decision-making task. These results revealed dissociable roles of the prefronto-subcortical pathways in working memory and decision-making, representing the technical advantage of imaging-guided pathway-selective chemogenetic manipulation for dissecting neural circuits underlying cognitive functions in primates

    Chemogenetic attenuation of cortical seizures in nonhuman primates

    Get PDF
    「てんかん」の発生を時間的・空間的にピンポイントで抑える画期的な治療法を開発 --世界で初めてサルでの有効性を実証、臨床応用に向け大きく前進--. 京都大学プレスリリース. 2023-03-01.Epilepsy is a disorder in which abnormal neuronal hyperexcitation causes several types of seizures. Because pharmacological and surgical treatments occasionally interfere with normal brain function, a more focused and on-demand approach is desirable. Here we examined the efficacy of a chemogenetic tool—designer receptors exclusively activated by designer drugs (DREADDs)—for treating focal seizure in a nonhuman primate model. Acute infusion of the GABAA receptor antagonist bicuculline into the forelimb region of unilateral primary motor cortex caused paroxysmal discharges with twitching and stiffening of the contralateral arm, followed by recurrent cortical discharges with hemi- and whole-body clonic seizures in two male macaque monkeys. Expression of an inhibitory DREADD (hM4Di) throughout the seizure focus, and subsequent on-demand administration of a DREADD-selective agonist, rapidly suppressed the wide-spread seizures. These results demonstrate the efficacy of DREADDs for attenuating cortical seizure in a nonhuman primate model
    corecore