85 research outputs found
Homer/vesl proteins and their roles in CNS neurons
Since their initial discovery in 1997, Homer/Vesl proteins have become increasingly investigated as putative regulators of receptor and ion-channel function in the central nervous system. Within a relatively brief period, numerous research reports have described manifold effects of Homer proteins, including the modulation of the trafficking of type I metabotropic glutamate receptors (mGluRs), axonal pathfinding, mGluR coupling to calcium and potassium channels, agonist-independent mGluR activity, ryanodine receptor regulation, locomotor activity, and behavioral plasticity. This review summarizes our current knowledge on the induction, expression, and structure of the various forms of Homer proteins, as well as their roles in neuronal function. In addition, we provide an outlook on novel developments with regard to the involvement of Homer-1a in hippocampal synaptic functio
Decreased postnatal neurogenesis in the hippocampus combined with stress experience during adolescence is accompanied by an enhanced incidence of behavioral pathologies in adult mice
<p>Abstract</p> <p>Background</p> <p>Adolescence is a vulnerable period in that stress experienced during this time can affect the incidence of psychiatric disorders later, during adulthood. Neurogenesis is known to be involved in the postnatal development of the brain, but its role in determining an individual's biological vulnerability to the onset of psychiatric disorders has not been addressed.</p> <p>Results</p> <p>We examined the role of postnatal neurogenesis during adolescence, a period between 3 to 8 weeks of age in rodents. Mice were X-irradiated at 4 weeks of age, to inhibit postnatal neurogenesis in the sub-granule cell layer of the hippocampus. Electrical footshock stress (FSS) was administered at 8 weeks old, the time at which neurons being recruited to granule cell layer were those that had begun their differentiation at 4 weeks of age, during X-irradiation. X-irradiated mice subjected to FSS during adolescence exhibited decreased locomotor activity in the novel open field, and showed prepulse inhibition deficits in adulthood. X-irradiation or FSS alone exerted no effects on these behaviors.</p> <p>Conclusion</p> <p>These results suggest that mice with decreased postnatal neurogenesis during adolescence exhibit vulnerability to stress, and that persistence of this condition may result in decreased activity, and cognitive deficits in adulthood.</p
LTP induction within a narrow critical period of immature stages enhances the survival of newly generated neurons in the adult rat dentate gyrus
Neurogenesis occurs in the adult hippocampus of various animal species. A substantial fraction of newly generated neurons die before they mature, and the survival rate of new neurons are regulated in an experience-dependent manner. Previous study showed that high-frequency stimulation (HFS) of perforant path fibers to the hippocampal dentate gyrus (DG) induces the long-term potentiation (LTP) in the DG, and enhances the survival of newly generated neurons in the DG. In this study, we addressed whether a time period exists during which the survival of new neurons is maximally sensitive to the HFS. We found that the enhancement of cell survival by HFS was exclusively restricted to the specific narrow period during immature stages of new neurons (7-10 days after birth). Furthermore, the pharmacological blockade of LTP induction suppressed the enhancement of cell survival by the HFS. These results suggest that the LTP induction within a narrow critical period of immature stages enhances the survival of newly generated neurons in rat DG
Autophagy enhances memory erasure through synaptic destabilization
There is substantial interest in memory reconsolidation as a target for the treatment of anxiety disorders, such as post-traumatic stress disorder. However, its applicability is restricted by reconsolidation-resistant boundary conditions that constrain the initial memory destabilization. In this study, we investigated whether the induction of synaptic protein degradation through autophagy modulation, a major protein degradation pathway, can enhance memory destabilization upon retrieval and whether it can be used to overcome these conditions. Here, using male mice in an auditory fear reconsolidation model, we showed that autophagy contributes to memory destabilization and its induction can be used to enhance erasure of a reconsolidation-resistant auditory fear memory that depended on AMPAR endocytosis. Using male mice in a contextual fear reconsolidation model, autophagy induction in the amygdala or in the hippocampus enhanced fear or contextual memory destabilization, respectively. The latter correlated with AMPAR degradation in the spines of the contextual memory-ensemble cells. Using male rats in an in vivo LTP reconsolidation model, autophagy induction enhanced synaptic destabilization in an NMDAR-dependent manner. These data indicate that induction of synaptic protein degradation can enhance both synaptic and memory destabilization upon reactivation and that autophagy inducers have the potential to be used as a therapeutic tool in the treatment of anxiety disorders
Activin in the Brain Modulates Anxiety-Related Behavior and Adult Neurogenesis
Activin, a member of the transforming growth factor-Ξ² superfamily, is an endocrine hormone that regulates differentiation and proliferation of a wide variety of cells. In the brain, activin protects neurons from ischemic damage. In this study, we demonstrate that activin modulates anxiety-related behavior by analyzing ACM4 and FSM transgenic mice in which activin and follistatin (which antagonizes the activin signal), respectively, were overexpressed in a forebrain-specific manner under the control of the Ξ±CaMKII promoter. Behavioral analyses revealed that FSM mice exhibited enhanced anxiety compared to wild-type littermates, while ACM4 mice showed reduced anxiety. Importantly, survival of newly formed neurons in the subgranular zone of adult hippocampus was significantly decreased in FSM mice, which was partially rescued in ACM4/FSM double transgenic mice. Our findings demonstrate that the level of activin in the adult brain bi-directionally influences anxiety-related behavior. These results further suggest that decreases in postnatal neurogenesis caused by activin inhibition affect an anxiety-related behavior in adulthood. Activin and its signaling pathway may represent novel therapeutic targets for anxiety disorder as well as ischemic brain injury
Synapse-specific representation of the identity of overlapping memory engrams
Memories are integrated into interconnected networks; nevertheless, each memory has its own identity. How the brain defines specific memory identity out of intermingled memories stored in a shared cell ensemble has remained elusive. We found that after complete retrograde amnesia of auditory fear conditioning in mice, optogenetic stimulation of the auditory inputs to the lateral amygdala failed to induce memory recall, implying that the memory engram no longer existed in that circuit. Complete amnesia of a given fear memory did not affect another linked fear memory encoded in the shared ensemble. Optogenetic potentiation or depotentiation of the plasticity at synapses specific to one memory affected the recall of only that memory. Thus, the sharing of engram cells underlies the linkage between memories, whereas synapse-specific plasticity guarantees the identity and storage of individual memories
Autophagy enhances memory erasure through synaptic destabilization
There is substantial interest in memory reconsolidation as a target for the treatment of anxiety disorders, such as post-traumatic stress disorder. However, its applicability is restricted by reconsolidation-resistant boundary conditions that constrain the initial memory destabilization. In this study, we investigated whether the induction of synaptic protein degradation through autophagy modulation, a major protein degradation pathway, can enhance memory destabilization upon retrieval and whether it can be used to overcome these conditions. Here, using male mice in an auditory fear reconsolidation model, we showed that autophagy contributes to memory destabilization and its induction can be used to enhance erasure of a reconsolidation-resistant auditory fear memory that depended on AMPAR endocytosis. Using male mice in a contextual fear reconsolidation model, autophagy induction in the amygdala or in the hippocampus enhanced fear or contextual memory destabilization, respectively. The latter correlated with AMPAR degradation in the spines of the contextual memory-ensemble cells. Using male rats in an in vivo LTP reconsolidation model, autophagy induction enhanced synaptic destabilization in an NMDAR-dependent manner. These data indicate that induction of synaptic protein degradation can enhance both synaptic and memory destabilization upon reactivation and that autophagy inducers have the potential to be used as a therapeutic tool in the treatment of anxiety disorders
Transmembrane and Ubiquitin-Like Domain-Containing Protein 1 (Tmub1/HOPS) Facilitates Surface Expression of GluR2-Containing AMPA Receptors
Some ubiquitin-like (UBL) domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) undergo constitutive cycling between the intracellular
compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins
in the recycling of the AMPARs to the synaptic surface has not yet been reported. Here, we report that the
Transmembrane and ubiquitin-like domain-containing 1 (Tmub1) protein, formerly known as the Hepatocyte Odd Protein
Shuttling (HOPS) protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane
fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPSRNAi
plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the
synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the
Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of
GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually,
we found that GluR2 and glutamate receptor interacting protein (GRIP) were coimmunoprecipitated by the anti-Tmub1/
HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in
regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing
AMPARs by facilitating the recycling of GluR2 to the plasma membrane
Arachidonic Acid Drives Postnatal Neurogenesis and Elicits a Beneficial Effect on Prepulse Inhibition, a Biological Trait of Psychiatric Illnesses
Prepulse inhibition (PPI) is a compelling endophenotype (biological markers) for mental disorders including schizophrenia. In a previous study, we identified Fabp7, a fatty acid binding protein 7 as one of the genes controlling PPI in mice and showed that this gene was associated with schizophrenia. We also demonstrated that disrupting Fabp7 dampened hippocampal neurogenesis. In this study, we examined a link between neurogenesis and PPI using different animal models and exploring the possibility of postnatal manipulation of neurogenesis affecting PPI, since gene-deficient mice show biological disturbances from prenatal stages. In parallel, we tested the potential for dietary polyunsaturated fatty acids (PUFAs), arachidonic acid (ARA) and/or docosahexaenoic acid (DHA), to promote neurogenesis and improve PPI. PUFAs are ligands for Fabp members and are abundantly expressed in neural stem/progenitor cells in the hippocampus. Our results are: (1) an independent model animal, Pax6 (+/β) rats, exhibited PPI deficits along with impaired postnatal neurogenesis; (2) methylazoxymethanol acetate (an anti-proliferative drug) elicited decreased neurogenesis even in postnatal period, and PPI defects in young adult rats (10 weeks) when the drug was given at the juvenile stage (4β5 weeks); (3) administering ARA for 4 weeks after birth promoted neurogenesis in wild type rats; (4) raising Pax6 (+/β) pups on an ARA-containing diet enhanced neurogenesis and partially improved PPI in adult animals. These results suggest the potential benefit of ARA in ameliorating PPI deficits relevant to psychiatric disorders and suggest that the effect may be correlated with augmented postnatal neurogenesis
- β¦