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Abstract

Some ubiquitin-like (UBL) domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) undergo constitutive cycling between the intracellular
compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins
in the recycling of the AMPARs to the synaptic surface has not yet been reported. Here, we report that the
Transmembrane and ubiquitin-like domain-containing 1 (Tmub1) protein, formerly known as the Hepatocyte Odd Protein
Shuttling (HOPS) protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane
fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-
RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the
synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the
Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of
GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually,
we found that GluR2 and glutamate receptor interacting protein (GRIP) were coimmunoprecipitated by the anti-Tmub1/
HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in
regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing
AMPARs by facilitating the recycling of GluR2 to the plasma membrane.
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Introduction

Proteins can be modified by either a single ubiquitin moiety or

polymeric ubiquitin chains to alter their stability, localization,

binding partners, or physical conformation [1,2]. Ubiquitination

has been reported to regulate cell surface receptors [3], such as

AMPARs [4], and c-aminobutyric acid A receptors (GABAARs)

[5]. Like ubiquitin, UBL proteins and UBL domain-containing

proteins appear to regulate a wide variety of proteins of various

processes [6,7]. UBL proteins share the three-dimensional

structure and conjugation properties of ubiquitin, while UBL

domain-containing proteins are not conjugatable and are found in

larger multidomain proteins [8]. Some UBL proteins and UBL

domain-containing proteins have been reported to be involved in

receptor regulation. One of the UBL domain-containing proteins,

Plic-1/ubiquilin-1, regulates the cell surface number and subunit

stability of GABAARs [9]. Moreover, the GABAAR-associated

protein (GABARAP/ubiquilin-2), which contains a UBL core

domain in the C-terminus [10], traffics GABAARs to the plasma

membrane in neurons [11].

Synaptic function is regulated by various processes, including

the transport of proteins [12–14], the release of neurotransmitters

[15], post-translational modification of microtubules [16,17], local

translation of dendritic RNA [18], and the ubiquitination of proteins

[19]. In the postsynaptic regions of excitatory synapses, a precise

AMPAR trafficking is crucial for synaptic transmission [20].

AMPARs, which form tetramers, consist of GluR1–4 subunits

[21]. In the adult hippocampus, GluR1/GluR2 and GluR2/GluR3

complexes are predominant [22]. GluR1/GluR2 travel fast only

under conditions of stimulation, while GluR2/GluR3 are recycled

constitutively between the intracellular compartment and the cell

surface [23,24]. Although the precise regulation of AMPAR

recycling is critical for the maintenance of postsynaptic transmission,

the underlying mechanisms remain elusive.

Here, we introduce a transmembrane and ubiquitin-like

domain-containing protein as a factor for AMPAR recycling.

The protein was screened from in silico research, by its neuronal

expression and domain characteristics; UBL domain and trans-

membrane domains. We found that the protein is related to the

recycling pathway of GluR2-containing AMPAR complexes and
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consequently contributes to the maintenance of the basal synaptic

transmission of AMPARs.

Results

Tmub1/HOPS, a UBL domain-containing protein, is
abundantly expressed in mouse brain

In order to identify the functionally unknown UBLs in the

brain, we performed bioinformatic analyses using the Celera

human genome database [25] and found 57 UBLs. Among them,

28 UBLs showed neuronal tissue expression, which was confirmed

by the functional annotations of mouse-3 (FANTOM3) database

(Figure 1A upper panel and Table S1). Intriguingly, we found that

only one of them contained putative transmembrane domains as

expected by the SOSUI system, which is a tool for secondary

structure prediction from protein sequences (Figure 1A lower

panel). From further in silico search, it was predicted that the

hydrophilic region is directed toward the cytoplasm and the first

transmembrane domain serves as a signal peptide (data not

shown). The identified protein was ‘‘Transmembrane and

ubiquitin-like domain-containing protein 1 (Tmub1),’’ which is

an official name of the gene, mRNA and protein of NCBI. This

protein is also known as ‘‘Hepatocyte Odd Protein Shuttling

(HOPS)’’ in NCBI and was previously reported as the protein

related with cellular proliferation in the liver [26,27]. We refer to

this protein as Tmub1/HOPS because it represents well the

domain characteristics which used in our identification. Since the

Tmub1/HOPS amino acid sequences were highly conserved (89%

identity) between the human and mouse genomes, we used mouse

brain cDNA libraries for cloning the full-length gene.

First, in order to confirm that tmub1/hops mRNA is expressed in

the brain, we performed northern blot analysis using RNA blots

from mouse tissues. We detected clear signals at approximately

1.1 kb, a size corresponding to the tmub1/hops mRNA length

reported in the FANTOM3 database, from the brain as well as other

tissues including the heart, liver, and kidney (Figure 1B). Next, in

order to examine whether the Tmub1/HOPS protein is expressed in

the brain, we developed a rabbit polyclonal antibody against 29–191

amino acids of the Tmub1/HOPS protein fused with a glutathione

S-transferase (GST) tag at its N terminus. By using this antibody, we

performed western blotting analysis on various mouse tissues. Major

signals were detected at approximately 26–27 kDa, the correspond-

ing size expected from tmub1/hops mRNA. Although a strong high-

molecular band was observed in the liver, there were no such signals

in the brain tissue. It is possible that there is a liver-specific high-

molecular factor with a similar amino sequence or conformation that

is recognized easily by anti-Tmub1/HOPS antibodies. While almost

all the tissues examined exhibited Tmub1/HOPS signals, the brain

tissue showed the strongest signal among all (Figure 1C). Moreover,

in the brain tissue, the Tmub1/HOPS protein was widely expressed

(Figure 1D).

Tmub1/HOPS is found in synaptosomal membrane
Next, we examined whether the Tmub1/HOPS protein is

expressed in neurons. We immunostained primary hippocampal

cultured neurons on day in vitro (DIV) 14 with the anti-Tmub1/

HOPS antibody. Clear Tmub1/HOPS signals were detected in

the MAP2-positive dendrites and in the cell bodies of the

hippocampal neurons (Figure 2A left). The magnified images of

the dendrites (Figure 2A right) show that the signals are observed

close to or attached to the dendrites and at the dendritic shaft

(arrowheads). The signals of Tmub1/HOPS were found in

PSD95-positive postsynaptic spines (Figure 2B arrows) as well as

in the dendritic shaft (Figure 2B arrow heads). Further, the

Tmub1/HOPS signals were hardly found in the Tau1-positive

axon (Figure 2C arrow). In order to confirm that these signals

show endogenous Tmub1/HOPS, we constructed Tmub1/

HOPS-RNAi plasmids having sequences corresponding to 519–

537 base pair (bp), 134–152 bp, and 732–750 bp of Tmub1/

Figure 1. Tmub1/HOPS protein is abundantly expressed in
mouse brain. (A) The summary of the in silico screening (upper panel)
and the organization of mouse Tmub1/HOPS (lower panel). Among
20000–25000 human genes from the Celera human genome database,
57 genes contained the UBL domain (black), and 28 of them showed
neuronal expression (Table S1). Among them, only one gene, Tmub1/
HOPS, had putative TM domains (gray) from SOSUI. Tmub1/HOPS had 3
putative TM domains (TM1–3) and a UBL domain. The hydrophobicity
profile of Tmub1/HOPS is shown (under the scheme). The X-axis
corresponds to the amino acid sequences and the Y-axis, to its
hydrophobicity. Abbreviations: TM, transmembrane. (B) tmub1/hops
mRNA expression in mouse tissues. tmub1/hops signals were detected
at approximately 1.3 kb in the heart, brain, liver, and kidney. Beta-actin
was used as a loading control. (C) Western blotting of mouse tissues
with anti-Tmub1/HOPS antibody. The Tmub1/HOPS protein was most
abundantly expressed in the brain. The Tmub1/HOPS signals were
detected at approximately 26–27 kDa. Actin was used as a loading
control. (D) Western blotting of parts of the mouse brain. The Tmub1/
HOPS protein was expressed in almost all parts of the mouse brain.
Abbreviations: H, homogenate; OB, olfactory bulb; ON, optic nerve; CC,
cerebral cortex; HC, hippocampus; CS, corpus striatum; AD, amygdala;
TM, thalamus; HT, hypothalamus; PG, pituitary gland; MO, medulla
oblongata; CB, cerebellum; SC, spinal cord.
doi:10.1371/journal.pone.0002809.g001

A Factor for GluR2 Trafficking
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HOPS. In human embryonic kidney (HEK) 293 cells, overex-

pressed FLAG-Tmub1/HOPS was detected as two bands by anti-

FLAG antibody as well as by the anti-Tmub1/HOPS antibody

(Figure 2D), indicating that Tmub1/HOPS is cleaved at the C-

terminus, as has been previously reported [26]. The FLAG-

Tmub1/HOPS signals were reduced in cells transfected with the

plasmid for Tmun1/HOPS RNAi, while the signals were normally

presented in cells transfected with the scrambled plasmid. The

plasmids containing 134–152 bp of Tmub1/HOPS showed the

most significant RNAi effect. The plasmids containing 519–

537 bp of Tmub1/HOPS also showed a significant reduction after

96 h (Figure 2D). When we introduced the RNAi of Tmub1/

HOPS (134–152 bp) to the hippocampal neurons at DIV 14 and

incubated them for additional 2 d, the signals detected by the anti-

Tmub1/HOPS antibody were significantly reduced throughout

the entire neurons, although a few signals of Tmub1/HOPS were

still observed in the cell body (Figure 2E). Thus, the Tmub1/

HOPS signals in the neurons shown in the immunostaining that

used the anti-Tmub1/HOPS antibody were proved to be the

endogenous signals of Tmub1/HOPS.

Figure 2. Tmub1/HOPS is observed in the synaptic membranous compartment. (A) Double immunostaining of Tmub1/HOPS along with
the dendritic marker MAP2 using cultured rat hippocampal neurons. Endogenous Tmub1/HOPS signals were detected widely throughout the neuron
including the soma and dendrites. In the magnified image, Tmub1/HOPS signals are found at dendritic shaft as well as at protrusion structures of
dendrites (arrow heads). (B) Double immunostaining of Tmub1/HOPS along with the postsynaptic marker PSD-95. In the magnified image, some
portion of Tmub1/HOPS were observed on PSD-95-positive puncta (arrows), while another portion of Tmub1/HOPS were observed in dendritic shaft
as well (arrow heads). (C) Double immunostaining of Tmub1/HOPS along with the axonal marker Tau1. Tmub1/HOPS signals were hardly found in
Tau1-positive axon (arrow). (D) Western blotting of HEK293 cells transfected with Tmub1/HOPS-RNAi plasmids (519–537, 134–152, 732–750) and the
scramble plasmids (control). Overexpressed FLAG-Tmub1/HOPS appeared as double bands. The bands almost completely disappeared in cells
transfected with Tmub1/HOPS-RNAi (134–152) for 30 h, while the control cells showed a strong expression of FLAG-Tmub1/HOPS. The cells
transfected with Tmub1/HOPS-RNAi (519–537) also showed significant reduction of FLAG-Tmub1/HOPS after 96 h. (E) Neurons transfected with
Tmub1/HOPS-RNAi (134–152) or its scrambled plasmid together with the EGFP plasmid for visualization (green). In the RNAi-induced neurons,
Tmub1/HOPS signals (white) were strongly reduced, although faint signals still remained in the cell body; in contrast, scrambled plasmid-transfected
neurons exhibited clear Tmub1/HOPS signals in the cell body and neurites. Scale bar, 10 mm. (F) Mouse brain separation into the cytosolic and
membranous fractions. Most of the Tmub1/HOPS was separated into the membranous fraction. The transferrin receptor (TfR) and p230 were used as
markers for the membranous and cytosolic fractions, respectively. Abbreviations: Homo, homogenate; Cyto, cytosolic; Memb, membranous. (G)
Subcellular fractionation using mouse brains. The Tmub1/HOPS signals were found in the synaptosomal membrane fraction (SPM). From the SPM
fraction, some of Tmub1/HOPS, GluR2, and an endosomal marker Rab4 were dissolved by TX-100, while PSD-95 was not. Abbreviations: Homo,
homogenate; P1, crude nuclear; S1, crude synaptosomal; S2, cytosolic synaptosomal; P2, crude synaptosomal pellet; LP1, crude synaptosomal
membrane; LP2, synaptosomal vesicle; SPM, synaptosomal membrane; S, supernatant; P, pellet.
doi:10.1371/journal.pone.0002809.g002
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Tmub1/HOPS was expected to possess transmembrane

domains exhibiting a high hydropathy value (Figure 1A lower).

To determine whether the endogenous Tmub1/HOPS is localized

in the membranous compartment, we fractionated mouse brain

extracts into cytosolic and membranous fractions (Figure 2F).

Tmub1/HOPS was fractionated into the membranous fraction

rather than into the cytosolic fraction.

Because some of the Tmub1/HOPS signals were observed at

the PSD95-positive postsynaptic spines (Figure 2B) and Tmub1/

HOPS was localized in the crude membranous fraction (Figure 2F),

we speculated that Tmub1/HOPS may exist in synaptic

membrane compartments. To check this, we performed subcel-

lular fractionation of mouse brain (Figure 2G). A crude

synaptosomal pellet (P2), containing Tmub1/HOPS, was divided

into a crude synaptosomal membrane (LP1) and a synaptosomal

vesicle (LP2). The LP1, where much of Tmub1/HOPS was

contained, was further purified into a synaptosomal membrane

(SPM). Tmub1/HOPS was found in the SPM, showing that

Tmub1/HOPS exists in synaptosomal membrane compartments.

Then, the SPM fraction, wherein Tmub1/HOPS as well as

GluR2, Rab4, and postsynaptic density protein (PSD)-95 were

contained, was attempted to be dissolved by Triton X (TX)-100.

Much of Tmub1/HOPS, GluR2, and Rab4 were dissolved by

TX-100, while PSD-95 was not. Taken together, these results

indicated that some of Tmub1/HOPS exist in the post synaptic

membranes containing not the stable components of the PSD but

the TX-100-soluble components, such as endosomal membranes.

Tmub1/HOPS-RNAi decreases the amplitude of AMPAR-
mediated synaptic current and increase the inward
rectification of EPSC current/voltage

Next, we examined whether Tmub1/HOPS plays a role in

synaptic function. In the central nervous system, a majority of

rapid excitatory synaptic transmission is mediated by AMPAR

[21]. Therefore, we attempted to measure AMPAR-mediated

synaptic transmission in the neurons transfected with the Tmub1/

HOPS-RNAi and in their control neurons. Transfection was

performed on DIV 14 and a miniature excitatory postsynaptic

current (mEPSC) was recorded under a whole-cell voltage-clamp

condition (holding potential, 270 mV and +50 mV) in the

presence of 0.5 mM TTX after 2 d [15,19]. Membrane resistance

and capacitance did not differ significantly (n = 10; P.0.05; t-test)

among or within the cells that were compared. This implies that

Tmub1/HOPS expression itself does not alter the membranous

characteristics of neurons. Figure 3A shows the representative

traces of mEPSC recorded from the scramble-transfected neurons

and that from the Tmub1/HOPS-RNAi-transfected neurons. The

mEPSC amplitude was significantly reduced in the Tmub1/

HOPS-RNAi-transfected neurons as compared to that in the

scramble-transfected neurons (n = 10; P,0.05; t-test; Figure 3B).

No significant differences were found in the frequency, rise time,

and decay time of mEPSC. This result showed that Tmub1/

HOPS played a role in maintaining AMPAR-mediated basal

synaptic transmission.

To determine whether changes occur in the GluR2-containing

AMPARs, we measured the AMPA-mEPSC under the voltage

clamp condition in Tmub1/HOPS-RNAi neurons and the

corresponding control neurons. It has been known that GluR2-

lacking AMPARs show inward rectification of EPSC current/

voltage relationships, while GluR2-containing AMPARs do not

show the inward rectification [28]. The AMPAR-mediated mEPSCs

were recorded at different holding potentials of 270 mV and

+50 mV. The Tmub1/HOPS-RNAi-induced neurons (Rectifica-

tion Index: 0.8960.02; n = 10) exhibited significantly larger inward

rectification than the scramble-induced neurons (Rectification index:

0.7860.05; n = 10) (Figure 3C, D). This result indicated that

Tmub1/HOPS-RNAi affects GluR2-containing AMPARs specifi-

cally rather than GluR2-lacking AMPARs.

Figure 3. The amplitude of AMPA-mEPSC is suppressed in Tmub1/HOPS-RNAi neurons in a GluR2-containing AMPAR dependent
manner. (A) Representative traces of AMPAR-mediated mEPSC. (B) The AMPA mEPSC amplitude of the Tmub1/HOPS-RNAi neuron was significantly
smaller than that of the scramble-treated neuron (n = 10; *P,0.05; t-test). In contrast, the AMPA mEPSC frequency, rise time, and decay time of the
Tmub1/HOPS-RNAi neuron did not differ significantly from those of the scramble-treated neuron (n = 10; P.0.05; t-test). (C) Averaged mEPSC at
holding potential of +50 (top) and 270 mV (bottom) recorded from the control and HOPS-RNAi induced primary cultured neuron. (D) Rectification
index of the HOPS-RNAi induced neuron showed the significant decrease compared to the control neuron (n = 10; *P.0.05; t-test).
doi:10.1371/journal.pone.0002809.g003
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Tmub1/HOPS regulates synaptic surface expression of
GluR2 but not GluR1

The decrease in the amplitude of AMPAR mEPSC in the

Tmub1/HOPS-RNAi neurons suggested a reduction in the

AMPAR number on the postsynaptic surface of the Tmub1/

HOPS-RNAi neurons. To examine whether the AMPAR number

on the postsynaptic surface was actually decreased in the Tmub1/

HOPS-RNAi neurons, we measured the immunofluorescent

intensity of surface GluR2 or GluR1. In the Tmub1/HOPS-

RNAi neurons, the GluR2 level was significantly decreased at the

cell surface (Figure 4A) while the GluR1 level remained

unchanged, as compared to their control neurons (Figures 4C).

Similar results were obtained from the postsynaptic AMPARs by

measuring the postsynaptic puncta, which were defined as

presynaptic marker (VAMP2 or synaptophysin)-positive puncta.

The fluorescence level of postsynaptic GluR2 was significantly

decreased in the Tmub1/HOPS-RNAi neurons as compared to

the control neurons (RNAi (519–537), n = 25, P,0.05; RNAi

(134–152), n = 160, P,0.001; t-test; Figure 4B). On the other

hand, the surface GluR1 presented no significant changes (RNAi

(134–152), n = 170, P.0.05; t-test; Figure 4D). Immunostaining of

synaptic AMPARs in the Tmub1/HOPS-RNAi and control

neurons supported the electrophysiological results that the

decrease in the amplitude is due to the reduction in the AMPAR

number, particularly the GluR2 number.

To confirm the Tmub1/HOPS-dependent changes of the

AMPAR surface expression, we evaluated the surface expression

of the AMPARs on the Tmub1/HOPS-overexpressing neurons

(Figures 4E, G). The EGFP-Tmub1/HOPS-overexpressing neu-

rons showed a significant increase in surface GluR2 as compared

with that on the EGFP-overexpressing neurons (n = 89, P,0.01, t-

test; Figure 4F); in contrast, the EGFP-Tmub1/HOPS-overex-

pressing neurons did not show any significant differences in the

surface GluR1 level (n = 71, P.0.05; t-test; Figure 4H). These

observations suggested that Tmub1/HOPS regulates the surface

expression of GluR2 but not of GluR1.

Recycling of internalized GluR2 to cell surface is delayed
in Tmub1/HOPS-RNAi neurons

AMPARs have been known to recycle constitutively between

the plasma membrane and the intracellular compartment [23,24].

Since Tmub1/HOPS expression altered the synaptic surface

expression of GluR2, we hypothesized that Tmub1/HOPS played

a role in the recycling pathway of GluR2-containing AMPARs;

hence, we performed a recycling assay for GluR2 and GluR1 in

the Tmub1/HOPS-RNAi neurons and their control neurons.

After labeling of surface GluR2 or GluR1, the cells were

incubated for 10 min to allow the internalization of the receptor-

antibody complexes. After the internalization period, the cells for

‘‘steady state’’ were fixed. The remaining surface antibodies were

stripped away using an acid buffer. After the acid wash, the cells

for ‘‘0 min’’ were fixed. The other cells were further incubated at

37uC to allow the recycling of the internalized receptor-antibody

complex to the cell surface. After 20 min of further incubation, the

cells for ‘‘20 min’’ were fixed. The fixed cells were stained with a

secondary antibody for labeling the surface receptor under

impermeable conditions, and then, the cells were permeabilized

for labeling of the intracellular receptors with another secondary

antibody under permeable conditions (Figures 5A, D). The

fluorescence intensity from the cell body and the dendrites was

measured, and similar results were obtained from both the regions.

The graphs shown in Figure 5 represent the results of the

measurement in dendrites.

During the first 10 min of the internalization period, there were

no significant differences in the internalized GluR2 between the

Tmub1/HOPS-RNAi-transfected and scramble-transfected neu-

rons (n = 12, P.0.05; t-test; Figure 5B). In contrast, the level of

surface-recycled GluR2 in the Tmub1/HOPS-RNAi-transfected

neurons was significantly delayed at 20 min after the acid wash, as

compared to the scramble-transfected neurons. After incubation

for 20 min, 42.3% of the internalized GluR2 was surface-recycled

in the scramble-transfected neurons, while only 29.7% of it was

surface-recycled in the Tmub1/HOPS-RNAi-transfected neurons

(n = 27, P,0.01; t-test; Figure 5C). The same experiments were

performed using the anti-GluR1 antibody (Figures 4D–F). For the

first 10 min of the internalization period, the internalized GluR1

level did not differ significantly between the Tmub1/HOPS-

RNAi-transfected and the scramble-transfected neurons (n = 9,

P.0.05; t-test; Figure 5E). Unlike in the case of GluR2, the level of

surface-recycled GluR1 during 20 min after the acid wash did not

differ significantly between the Tmub1/HOPS-RNAi-transfected

and the scramble-transfected neurons (n = 9, P.0.05; t-test;

Figure 5F). These recycling assays of GluR2 and GluR1 revealed

that Tmub1/HOPS is related to the recycling of GluR2, but not to

the recycling of GluR1, to the cell surface, indicating that the

reduction of the surface expression of GluR2 is due to the delayed

recycling of GluR2 in neurons transfected with Tmub-RNAi.

Recycling of internalized GluR2 to cell surface is
enhanced in neurons overexpressing Tmub1/HOPS

We performed the same experiments under Tmub1/HOPS-

overexpression conditions in order to confirm the effect of

Tmub1/HOPS on GluR2 recycling (Figure 6A). The amount of

internalized GluR2 during the first 10 min did not differ

significantly between the neurons overexpressing EGFP and the

neurons overexpressing EGFP-Tmub1/HOPS (n = 57, P.0.05; t-

test; Figure 6B). In contrast, the surface-recycled GluR2 level at

20 min after the acid wash was significantly increased in the

neurons overexpressing EGFP-Tmub1/HOPS as compared to the

neurons overexpressing EGFP (n = 29, P,0.01; t-test; Figure 6C).

This result showed that Tmub1/HOPS facilitated the recycling of

the internalized GluR2 to the cell surface, verifying the effect of

Tmub1/HOPS on GluR2 recycling.

A large portion of Tmub1/HOPS colocalizes with GluR2 at
recycling endosomes

In the recycling pathway of GluR2-containing AMPARs, which

endosomes does Tmub1/HOPS exist at? In the recycling of

AMPARs, NMDA/TTX stimulation with TTX preincubation or

AMPA stimulation induces AMPARs to sort to the recycling

pathway and not to degradation pathway [29,30]. At 10 min after

the stimulation, AMPARs are mainly colocalized with early

endosomal markers, while at 30 min they show low colocalization

with early endosomal markers but show unchangeable or further

increased colocalization with recycling endosomal markers [29–

31]. This spatiotemporal information about endosomal localiza-

tion of AMPARs depending on time is proved by biochemical/

immunocytochemical methods [29] and generally used in other

studies [30,31].

To determine in which endosomes Tmub1/HOPS is found, we

used above spatiotemporal information. After the NMDA/TTX

stimulation, the colocalizing ratio between Tmub1/HOPS (or

VAMP2) and GluR2 was measured depending on time. Little of

the Tmub1/HOPS-positive dots were colocalized with GluR2 at

10 min after the stimulation (Figure 7A arrows in the left image,

7B), while a significantly large portion of the Tmub1/HOPS-

A Factor for GluR2 Trafficking
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Figure 4. Tmub1/HOPS facilitates the surface expression of GluR2, but not of GluR1. Surface GluR2 or GluR1 of live neurons was stained
with the antibody that recognizes the extracellular domain of GluR2 or GluR1. (A–D) Neurons induced by either Tmub1/HOPS-RNAi (134–152) or
scramble plasmid. pSUPER-RNAi plasmids were cotransfected on DIV 14 of the cultured rat hippocampal neurons with EGFP plasmids for visualization
and were incubated for follwing 2 days. (A) Cell surface GluR2 was decreased in the Tmub1/HOPS-RNAi-transfected neurons as compared with the
scramble-transfected neurons. (B) The postsynaptic surface GluR2 was significantly decreased in the Tmub1/HOPS-RNAi neurons (RNAi (519–537),
n = 25, *P,0.05; RNAi (134–152), n = 160, ***P,0.001, t-test). For postsynaptic measurement, presynaptic staining of VAMP2 or synaptophysin was
performed after permeabilization, and the synaptic AMPAR fluorescence intensity was measured by measuring colocalizing presynaptic marker-
positive puncta. (C, D) GluR1 staining at the cell surface did not differ between the Tmub1/HOPS-RNAi neurons and the scramble neurons. Consistent
results were obtained from postsynaptic GluR1 (n = 170; P.0.05; t-test). Abbreviations: n.d., no data. (E–H) Neurons expressing either EGFP-Tmub1/
HOPS or EGFP. (E) Cell surface GluR2 was increased in EGFP-Tmub1/HOPS-overexpressing neurons as compared to the EGFP-overexpressing neurons.
(F) Postsynaptic surface GluR2 showed a significant increase in the EGFP-Tmub1/HOPS-overexpressing neurons as compared to the EGFP-
overexpressing neurons (n = 89; **P,0.01; t-test). (G) In the cell surface GluR1, no significant changes were observed between EGFP-Tmub1/HOPS-
and EGFP-overexpressing neurons. (H) Postsynaptic surface GluR1 did not show significant changes in EGFP-Tmub1/HOPS-overexpressing neurons as
compared to EGFP-overexpressing neurons (n = 71; P.0.05; t-test). The immunofluorescence level of synaptic AMPARs was normalized by the
fluorescence intensity of synaptic AMPARs on the neurons expressing EGFP. The values shown indicate the means6SEM. Scale bar, 10 mm.
doi:10.1371/journal.pone.0002809.g004
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positive dots were colocalized with GluR2 at 30 min (Figure 7A

arrows in the right image, 7B). The colocalizing ratio between

VAMP2 and GluR2 was not significantly changed during the

indicated incubating period after the stimulation. TTX incubation

alone did not show any significant changes during the incubation

time in the colocalizing ratio between GluR2 and Tmub1/HOPS

(or VAMP2) (Figure 7B). The fluorescent intensities of intracellular

GluR2 did not significantly change during the incubation time

(Figure 7C). These results showed that a large portion of Tmub1/

HOPS colocalizes with GluR2 at recycling endosomes during the

recycling period of GluR2-containing AMPARs.

Figure 5. Tmub1/HOPS-RNAi decreases the recycling of
internalized GluR2, but not of GluR1, to the cell surface. (A)
The representative images of the GluR2 recycling assay on Tmub1/
HOPS-RNAi and scramble-transfected neurons. Live neurons were
stained with the anti-GluR2 antibody and were incubated for 10 min
for internalization. After the internalization period, the antibodies
remaining on the surface were removed using an acid buffer. Then, the
neurons were further incubated for returning of the antibody-GluR2
complex to the cell surface. After fixation, the surface-recycled GluR2
was detected with a secondary antibody, and the neurons were then
permeabilized followed by the detection of intracellular GluR2 with
another secondary antibody. (B) The normalized value of internalized
GluR2 during the first 10 min. The internalized GluR2 level did not differ
significantly between the Tmub1/HOPS-RNAi- and scramble-transfected
neurons (n = 12; P.0.05; t-test). (C) The normalized value of surface
GluR2 depending on duration of incubation after the acid wash. After
the incubation of 20 min, the recycling of internalized GluR2 to the cell
surface was significantly delayed in Tmub1/HOPS-RNAi-transfected
neurons as compared to the scramble-transfected neurons (n = 27;
**P,0.01; t-test). (D) The representative images of the GluR1 recycling

assay on the Tmub1/HOPS-RNAi- and scramble-transfected neurons. (E)
The normalized value of internalized GluR1 during the first 10 min. The
internalized GluR1 level did not differ significantly between the Tmub1/
HOPS-RNAi- and scramble-transfected neurons (n = 9; P.0.05; t-test). (F)
The normalized value of surface GluR1 depending on the duration of
incubation after the acid wash. After the incubation of 20 min, the
recycling of internalized GluR1 did not differ significantly between the
Tmub1/HOPS-RNAi-transfected and scramble-transfected neurons
(n = 9; P.0.05; t-test). The fluorescence intensity was normalized by
the intensity of the internalized AMPARs during the first 10 min in the
scramble-transfected neurons. The values shown indicate the mean-
s6SEM. Scale bar, 10 mm.
doi:10.1371/journal.pone.0002809.g005

Figure 6. Tmub1/HOPS overexpression increases the recycling
of internalized GluR2 to the cell surface. The same experiments as
described in Figure 5 were performed on neurons expressing EGFP-
Tmub1/HOPS or EGFP. (A) The representative images of the GluR2
recycling assay on neurons overexpressing EGFP-Tmub1/HOPS or EGFP.
(B) The normalized value of internalized GluR2 during the first 10 min.
The internalized GluR2 level did not differ significantly between EGFP-
Tmub1/HOPS and EGFP-overexpressing neurons (n = 57; P.0.05; t-test).
(C) The normalized value of surface GluR2 depending on the duration of
incubation after the acid wash. After 20 min of the incubation, the level
of surface-recycled GluR2 was significantly increased in the EGFP-
Tmub1/HOPS-overexpressing neurons as compared to the EGFP-
overexpressing neurons (n = 29; **P,0.01; t-test). The fluorescence
intensity was normalized by the intensity of the internalized GluR2
during the first 10 min in the EGFP-overexpressing neurons. The values
shown indicate the means6SEM. Scale bar, 10 mm.
doi:10.1371/journal.pone.0002809.g006
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Tmub1/HOPS is associated with GluR2 and GRIP
Our present study has demonstrated that Tmub1/HOPS

regulates the recycling of GluR2-containing AMPARs. Hence,

we speculated whether endogenous Tmub1/HOPS had any

association with GluR2 or GluR2-interacting factors that

regulate GluR2 recycling. To determine this, we subjected whole

mouse brain to immunoprecipitation with the anti-Tmub1/

HOPS antibody. We found that GluR2 and GRIP, a PDZ

protein that interacts with GluR2 [32], were coimmunoprecipi-

tated by the anti-Tmub1/HOPS antibody. Syntaxin 13, which

regulates transferrin receptor recycling [33], was not coimmu-

noprecipitated by the anti-Tmub1/HOPS antibody. We also

examined GluR1 but could not obtain a clear answer because of

the high background noise level. This result showed that

Tmub1/HOPS is associated with the complexes containing

GluR2 and GRIP.

Because Tmub1/HOPS does not contain PDZ domains, we

hypothesized that Tmub1/HOPS interacts with GRIP for GluR2

trafficking. While we detected the interaction between Tmub1/

HOPS and GRIP in HEK293 cells, they did not bind directly in

yeast 2-hybrid assay (data not shown). Although we did not obtain

consistent results between the above two assays, our results showed

that the endogenous Tmub1/HOPS is associated with the

complexes that contain GluR2 and GRIP in the mouse brain.

Discussion

In this study, we introduced the neuronal function of Tmub1/

HOPS that we screened by in silico analysis. This protein was

initially identified as an overexpressed protein during liver

regeneration after partial hepatectomy [26]. Its overexpression

interferes with protein synthesis and suppresses proliferation [26],

while its depletion generates supernumerary centrosomes, multinu-

cleated cells, and multipolar spindle formation in NIH3T3 cells

[27]. This protein is found in cytosolic complexes containing

gamma-tubulin and CRM-1 in hepatoma cells and has been

implicated as an essential constituent of centrosome assembly [27].

The following findings of our present report are consistent with the

findings of previous reports, i.e., the protein expression level of

Tmub1/HOPS is low during normal conditions in the liver

(Figure 1C) and that its signals show two bands on western blotting

(Figure 2D). In contrast, its localization and function appear to be

slightly different. Previous reports show that Tmub1/HOPS is

localized at the centrosome and is important for the normal

proliferation of hepatoma cells, while our present study presents that

Tmub1/HOPS exists widely including in cell body/neurites and

plays a role in receptor trafficking within the neuron. Gamma-

tubulin, which is localized to the centrosome in cycling cells, is

present at the centrosome of neurons just beginning to extend their

processes, while it is not associated with centrosomes in neurons in

which functional synaptic connections have formed [34]. This

suggests that centrosomes exist in different fashions depending upon

whether the cell is of the mitotic or postmitotic type. We investigated

the localization and function of Tmub1/HOPS in neurons having

functional synaptic connections. The differences in our findings and

those of previous reports appear to be due to the different cell types.

From the FANTOM3 database, which provides data regarding

expressed sequence tags obtained from murine tissues [35], tmub1/

hops RNA was expressed in the brain (Table S1); this was confirmed

by our northern blot analysis (Figure 1B). We confirmed that

Tmub1/HOPS protein is abundantly expressed in the brain

(Figure 1C), consistent with the database expectation. The expression

patterns of tmub1/hops mRNA and the Tmub1/HOPS protein were

not completely consistent with each other, suggesting that the effects

of transcription, translation, and posttranslational degradation might

differ among the tissues. In the brain tissue, the Tmub1/HOPS

protein was widely expressed (Figure 1D), suggesting that Tmub1/

HOPS may play its roles in various parts of the brain. Consistently

with the in silico expectation that Tmub1/HOPS possesses

transmembrane domains (Figure 1A), endogenous Tmub1/HOPS

was found in the membranous fraction of the mouse brain extracts

(Figure 2F). A previous report [36], which showed growth

suppression of Escherichia coli by the expression of Tmub1/HOPS

because of its putative transmembrane regions, also supports the fact

that Tmub1/HOPS possesses transmembrane domains.

In neurons, Tmub1/HOPS, whose signals were confirmed to be

endogenous ones (Figure 2D, E), was distributed in the dendrites

(Figure 2A) rather than axons (Figure 2C). Further, a portion of

Tmub1/HOPS was found in the post synaptic spines (Figure 2B).

Our data suggested that in the post synapse, Tmub1/HOPS exists

to the synaptic membranous fraction including not stable post

synaptic density components but endosomal membranous com-

ponents (Figure 2G). Because GluR2 is recycled between plasma

membrane and intracellular compartments, some portion of

GluR2 is likely to localize at endosomes, where Tmub1/HOPS

is suggested to play its role in GluR2 recycling. Further, Tmub1/

Figure 7. A large portion of Tmub1/HOPS colocalizes with
GluR2 at recycling endosomes. After 1 h of preincubation with TTX,
neurons were incubated with extracellularly binding anti-GluR2
antibody, stimulated with NMDA/TTX for 3 min, and further incubated
for 10 or 30 min. Then, the cells were acid washed to remove
extracellular labeling, fixed, and colabeled with Tmub1/HOPS or the
synaptic vesicle protein VAMP2. (A) Tmub1/HOPS (green) and GluR2
(red) and their merged images (yellow) are shown. Many of Tmub1/
HOPS-positive dots (arrows in the left image) were not colocalized with
GluR2 at 10 min after NMDA stimulation, while many of the them
(arrows in the right image) were colocalized with GluR2 at 30 min after
the stimulation. Scale bar, 10 mm. (B) The weighted colocalization
coefficient between GluR2 and Tmub1/HOPS (square) or VAMP2
(rectangle) is shown. Blue color presents control cells for TTX
incubation, while red color presents cells for NMDA/TTX incubation.
The weighted colocalization coefficient between GluR2 and Tmub1/
HOPS in NMDA/TTX incubation was significantly increased at 30 min
compared with at 10 min (n = 14 ; **P,0.01; t-test), while its coefficient
in TTX incubation or the coefficient between GluR2 and VAMP2 in TTX
or NMDA/TTX incubation did not show significant changes. (C)
Normalized fluorescent intensities of intracellular GluR2 at incubation
time of 10 min or 30 min are shown. The fluorescent intensity of
intracellular GluR2 at 10 min was used for normalization. There was no
significant change between the intensity of 10 min and the intensity of
30 min. The values shown indicate the means6SEM.
doi:10.1371/journal.pone.0002809.g007
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HOPS was revealed to exist in recycling endosomes rather than

early endosomes (Figure 7). Although the Tmub1/HOPS signals

in a neuron are widely distributed, our data sufficiently explain the

functional existence of Tmub1/HOPS for its GluR2 regulation.

In the Tmub1/HOPS-RNAi-transfected neurons, only the

amplitude, but not the frequency, rise time, and decay time, of

AMPAR mEPSC was significantly decreased, (Figures 3A, B),

suggesting that only the number of postsynaptic AMPARs was

decreased, while the biophysical features of AMPARs remained

unchanged. Furthermore, Tmub1/HOPS-RNAi-transfected neu-

rons showed the larger inward rectification of AMPAR current

than the control neuron. Our results indicated that the GluR2-

containing AMPARs were mainly contributed to the modulation

of AMPAR mediated basal synaptic transmission by Tmub1/

HOPS (Figures 3C, D). It has been reported that peptides

inhibiting the interaction between NSF and GluR2 evoked a run-

down of the basal synaptic transmission, while the inhibition

between AP2 and GluR2 did not affect the basal synaptic

transmission [37]. Considering the previous report, Tmub1/

HOPS is presumed to play a crucial role in GluR2 recycling,

which is regulated by NSF but not by AP2 for the regulation of the

postsynaptic GluR2-containing AMPARs. Although the amplitude

change in the Tmub1/HOPS-RNAi neurons was significant as

compared to that in the control neurons (Figure 3B), the extent of

changes in electrophysiology was rather less than the extent of

changes in the immunostaining of the postsynaptic surface GluR2

(Figure 4B), because not all AMPARs contain GluR2 [38], i.e.,

GluR1 homomers exist.

An approximately 35% decrease in the surface endogenous

GluR2 was observed in the Tmub1/HOPS-RNAi neurons, where

the interaction between Tmub1/HOPS and the AMPAR

complexes was inferred to be inhibited, as compared to the

control neurons (Figures 4A, B). A similar or larger reduction in

surface endogenous GluR2 expression was observed in neurons

that inhibit the NEEP21-GRIP [31], PICK1-GRIP [39], or NSF-

GluR2 [40] interactions. No significant changes were observed in

the surface endogenous GluR1 in the Tmub1/HOPS-RNAi

neurons, as compared to the control neurons (Figures 4C, D),

suggesting that Tmub1/HOPS selectively regulates GluR2 and

not GluR1. Similarly, interference with the NEEP21-GRIP [31]

or PICK1-GRIP [39] interactions did not impair the surface

expression of endogenous GluR1. Our results from the Tmub1/

HOPS overexpression experiments were consistent with those of

the Tmub1/HOPS-RNAi experiments. The surface expression of

GluR2 (Figures 4E, F), but not of GluR1 (Figures 4G, H), was

increased in the Tmub1/HOPS-overexpressing neurons. Similar-

ly, the expression of full-length GRIP enhanced the surface

expression of coexpressed GluR2, suggesting that GRIP actively

promotes GluR2 surface trafficking [41]. Taken together, our

immunostaining results and previous reports of the AMPAR

surface staining suggest that the maintenance of the synaptic

surface expression of GluR2 requires various interactions among

non-PDZ proteins, PDZ proteins, and GluR2. Further, those

interactions appear to affect the GluR2 subunit selectively.

The amount of internalized GluR2 during 10 min did not differ

significantly between the Tmub1/HOPS-RNAi and control

neurons (Figures 5A, B), suggesting that Tmub1/HOPS is not

related to the endocytosis of GluR2 in the steady state. Recycling

of the internalized GluR2 to the cell surface was significantly

delayed in the Tmub1/HOPS-RNAi neurons (Figures 5A, C),

indicating that Tmub1/HOPS is related to the pathway by which

GluR2 is recycled to the cell surface. Likewise, the inhibition of the

NEEP21-GRIP [31] and GRIP-PICK1 [39] interactions delays

the recycling of GluR2, suggesting that they are required for the

recycling of GluR2 back to the plasma membrane. Consistent with

our results of immunostaining of the surface endogenous GluR1,

the internalization (Figures 5D, E) and recycling (Figures 5D, F) of

GluR1 did not differ significantly between the Tmub1/HOPS-

RNAi and control neurons. The inhibition of the NEEP21-GRIP

interaction also did not affect the internalization and the recycling

of GluR1 [31]. Therefore, Tmub1/HOPS appears to regulate the

recycling of GluR2, which also requires multiple interactions such

as those of NEEP21-GRIP and GRIP-PICK1.

The results from the neurons overexpressing Tmub1/HOPS

were consistent with those from the Tmub1/HOPS-RNAi-

transfected neurons. The internalization of GluR2 did not change

(Figures 6A, B) but the recycling of GluR2 varied significantly

(Figures 6A, C), supporting that Tmub1/HOPS is related to the

recycling of GluR2 but not to the internalization of GluR2. The

level of GluR2 or GluR1 recycled to the surface in the control cells

(Figures 5C, 5F, 6C) appeared to be relatively low as compared to

that in other reports [31,39], although the time scales used by us

were slightly different. In the absence of neuronal activity,

internalized AMPARs are sorted for either degradation or

reinsertion at synapses [24,29]; however, upon incubation with

AMPA or NMDA/TTX, AMPARs are more actively directed

into the recycling pathway [29,30]. Because we did not use any

artificial stimulation in our recycling assay, some AMPARs may

spontaneously be sorted for lysosomal degradation, which was

represented as a rather lower recycling ratio in the control cells, as

compared to other reports.

In surface-receptor regulation, Tmub1/HOPS appears to act

contrary to ubiquitin and the UBL protein SUMO. While

ubiquitin and SUMO decrease the surface number of their target

receptors [42–44], Tmub1/HOPS increases the surface number of

AMPARs. Like Tmub1/HOPS, some other UBL domain-

containing proteins, such as Plic-1/ubiquilin-1 and GABARAP/

ubiquilin-2, also increase the surface number of their receptors

although the underlying mechanisms may be somewhat different.

Tmub1/HOPS and GABARAP/ubiquilin-2 increase the surface

expression of receptors by facilitating the trafficking of the

receptors to the cell surface [11], while Plic-1/ubiquilin-1 increases

the surface expression of receptors by increasing the stability of the

receptors in the intracellular compartment [9]. Although the

function of the UBL domain of Tmub1/HOPS remains to be

revealed in future studies, it is interesting to speculate that the UBL

domain can act as ‘‘pseudo’’ ubiquitin, which blocks ubiquitin

function, similar to the dominant negative form of ubiquitin.

It was indicated that a large portion of Tmub1/HOPS exists at

recycling endosomes rather than at early endosomes (Figure 7A,

B). Internalized AMPARs for recycling enter to early endosomes

and sorted to recycling endosomes for returning to the plasma

membrane. NEEP21 interacts with the complex of GluR2 and

GRIP at early endosomes and sorts the complex to the recycling

pathway [31]. The recycling of GluR2-containing AMPARs

appears to be carried out by the association with endosomal

proteins and peripheral factors throughout the pathway. Tmub1/

HOPS may act for the returning of GluR2-containing AMPARs

to the plasma membrane, at recycling endosomes. Further, as the

fluorescent intensity of intracellular GluR2 was not significantly

changed (Figure 7C), the spatiotemporal information of AMPARs

after the stimulation is suggested to be consistent with previous

reports [29,30].

Tmub1/HOPS only affected the GluR2 subunit and not the

GluR1 subunit. Subunit-specific trafficking of AMPARs has been

known to occur [23,24] and appears to be critically related to their

intracellular C-terminal-binding partners [20]. Interestingly,

postsynaptic subunit-specific regulation of AMPARs is also
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affected by neurotransmitter release, i.e., a presynaptic effect [45].

Because Tmub1/HOPS is found at postsynaptic sites, Tmub1/

HOPS is likely to be related to the postsynaptic complex

containing GluR2 C-terminal-binding partners or GluR2, for

the regulation of GluR2. GRIP, known to interact with the C-

terminal site of GluR2 [32], was coimmunoprecipitated together

with GluR2 by Tmub1/HOPS from the mouse brain lysate

(Figure 8). GRIP is known to interact with other proteins, such as

kinesin [14], PICK1 [39], NEEP21 [31]; further, it plays certain

roles in the regulation of AMPAR recycling in order to modulate

the level of synaptic receptors [23,31,46,47]. The GluR2-GRIP

complexes may associate with Tmub1/HOPS at some points of

the constitutive recycling pathway. Tmub1/HOPS and GRIP

were coimmunoprecipitated in HEK293 cells while they did not

interact in our yeast 2-hybrid system (data not shown). For the

association of Tmub1/HOPS with the complexes containing

GluR2 and GRIP, it may be required another factor which exists

in the HEK293 cells but not in the yeast. The relation among

Tmub1/HOPS, GRIP, and GluR2 in the recycling of GluR2-

containing AMPARs remains to be answered in future studies.

Although many questions, such as the molecular mechanisms by

which Tmub1/HOPS works, are yet to be determined, our

present results suggest that Tmub1/HOPS plays a role in helping

GluR2 recycling to the cell surface. Because of its abundant and

wide expression in the brain, Tmub1/HOPS might also

participate in other functions in the brain. The trafficking of

AMPARs is rapid and is required for the retention of synapse,

which is related with the maintenance of memory. This study may

eventually serve to the elucidation of the recycling pathway of

AMPARs, which contributes to appropriate mental function.

Materials and Methods

In silico analysis
All the UBL domain-containing genes in the genomes of Homo

sapiens and Mus musculus were obtained from the Celera database

(database currently not available). The data obtained was

confirmed with the UCSC genome browser database (http://

genome.ucsc.edu) and NCBI Genbank (http://www.ncbi.nlm.nih.

gov). These UBL domain-containing proteins were examined by

the hmmpfam program that uses the Hidden Markov Model

(HMM) database HMMER 2.2 g (http://hmmer.wustl.edu).

These Pfam ubiquitin scores were higher than 1.0. From among

the proteins that contained the UBL domains, we further selected

UBLs using FANTOM3 databases and connected each represen-

tative transcript and protein set by public cDNA sequences,

BLASTN and TBLASTN (http://www.ncbi.nlm.nih.gov). The

results of hydropathy analysis from SOSUI (http://bp.nuap.

nagoya-u.ac.jp/sosui/) were adapted to the proteins screened by

the above method.

Cloning and expression vectors
Mouse Tmub1/HOPS cDNAs were generated from the total

RNA using Superscript II reverse transcriptase enzyme (Invitro-

gen, Carlsbad, CA), followed by PCR using the forward primer 59-

GTGCCATGGCCTTGATTGAA-39 and the reverse primer 59-

GCGCCTTGGGGAATGA-39. The PCR product was ligated

into pCRII-TOPO (Invitrogen), and the full-length Tmub1/

HOPS sequence was confirmed using an ABI PRISM 3700

(Applied Biosystems). Tmub1/HOPS was cloned using the

GatewayTM system.

To create Tmub1/HOPS-RNAi expression vectors, the following

oligonucleotides were annealed and ligated into pSUPER retro

(Oligoengine, Seattle, WA) between the BglII and HindIII sites: 59-

gatccccGACACCATTGGCTCCTTAAttcaagagaTTAAGGAGC-

CAATGGTGTCttttta-39 and 59-agcttaaaaaGACACCATTGGCT-

CCTTAAtctcttgaaTTAAGGAGCCAATGGTGTCggg-39 for

Tmub1/HOPS-RNAi (519–537); 59-gatccccGCCTGGGTCTCA-

ACACATAttcaagagaTATGTGTTGAGACCCAGGCttttta-39 and

59-agcttaaaaaGCCTGGGTCTCAACACATAtctcttgaaTATGTG-

TTGAGACCCAGGCggg-39 for Tmub1/HOPS-RNAi (134–152);

59-gatccccGAAATCGGCAGCCTTCTGTttcaagagaACAGAAG-

GCTGCCGATTTCttttta-39 and 59-agcttaaaaaGAAATCGGC-

AGCCTTCTGTtctcttgaaACAGAAGGCTGCCGATTTCggg-39

for Tmub1/HOPS-RNAi (732–750); 59-gatccccTATAGACACT-

CTCGCGCGAttcaagagaTCGCGCGAGAGTGTCTATAttttta-39

and 59-agcttaaaaaTATAGACACTCTCGCGCGAtctcttgaaTC-

GCGCGAGAGTGTCTATAggg-39 for the scramble controls.

For EGFP or EGFP-Tmub1/HOPS overexpression in the

hippocampal cultured neuron, we used vesl-1 minimal promoter,

which is neuron-selective (unpublished data) [48].

Animals
All procedures related to the care and treatment of animals were

in accordance with the guidelines of the National Institute of

Health and the Animal Care and Use Committee (Mitsubishi

Kagaku Institute of Life Sciences). C57BL/6J mice and Wistar SD

rats were used in this study.

Antibodies
For the production of the rabbit polyclonal antibody for

Tmub1/HOPS, a fusion protein containing 29–191 aa of

Tmub1/HOPS attached to a GST tag at the N terminus was

purified on a GST column and used as an antigen. The antibody

was purified by affinity chromatography using a HiTrap NHS-

activated column (GE Healthcare, Uppsala, Sweden) coupled with

maltose-binding protein-Tmub1/HOPS fusion proteins. The

following antibodies were also used: anti-FLAG, anti-Actin, anti-

MAP2, and anti-Alpha tubulin monoclonal antibodies (Sigma, St.

Louis, MO, USA); anti-GRIP and anti-Rab4 monoclonal

antibodies (BD Transduction Laboratories, Lexington, KY,

USA); anti-GluR2, anti-Synaptophysin, and anti-Synaptotagmin

monoclonal antibodies (Chemicon, Temecula, CA, USA); anti-

Tau1 monoclonal antibody (MAB3420, Chemicon); anti-GluR1

rabbit polyclonal antibody (Calbiochem, La Jolla, CA, USA); anti-

PSD-95 clone K28/43 mouse monoclonal antibody (Upstate Cell

Signaling Solutions, Lake Placid, NY); and anti-Syntaxin 13

polyclonal antibody (Synaptic Systems, Göttingen, Germany).

Figure 8. GluR2 and GRIP are immunoprecipitated from mouse
brain extracts by Tmub1/HOPS. Immunoprecipitation (IP) from the
mouse brain extract by using the anti-Tmub1/HOPS rabbit polyclonal
antibody. GluR2 as well as GRIP, which has been known to interact with
GluR2, were coimmunoprecipitated by Tmub1/HOPS. Syntaxin 13,
which regulates transferrin receptor recycling, was not coimmunopre-
cipitated by Tmub1/HOPS.
doi:10.1371/journal.pone.0002809.g008
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Northern blotting, Western blotting, and Subcellular
fractionation

Total RNA from the mouse brain homogenates was isolated using

Sepasol (Nacalai tesque, Kyoto, Japan), according to the manufac-

turer’s instructions. Western blotting was performed as described

previously [49]. For the isolation of the crude membrane fraction of

mouse brain, brains from the C57BL/6J mice were homogenized in

a buffer containing 250 mM sucrose, 3 mM imidazole, 1 mM

EDTA and protease inhibitors and were centrifuged at 1,0006g for

10 min. The supernatant was further separated by ultracentrifuga-

tion at 100,0006g for 1 h. The resultant pellet and supernatant were

used as the crude membrane and cytosol fractions, respectively. For

subcellular fractionation of the mouse brain for synaptic protein, we

performed following steps. Briefly, mouse brains were homogenized

in a buffer (Buffer A) containing 4 mM HEPES (pH 7.4), 320 mM

sucrose at 600 rpm for 10 times at 4uC and then centrifuged at

8006g for 10 min. The portion of the resultant pellet (P1) and

supernatant (S1) were saved for western blotting. S1 was centrifuged

at 9,2006g for 15 min. The resultant pellet (P2) and supernatant (S2)

were saved. P2 diluted with Buffer A was centrifuged at 10,2006g for

15 min. The resultant pellet was further diluted with Buffer A and

ice-chilled water was added to it. The diluted P2 was homogenized at

1,500 rpm 3 times. After chilling on ice for 30 min, the sample was

centrifuged at 25,0006g for 20 min. The resultant supernatant (LS1)

was further ultracentrifuged at 165,0006g for 2 h and the pellet was

saved for the LP2 fraction. The resultant pellet (LP1) was centrifuged

at 19,0006g for 150 min with a swing rotor. The obtained crude

SPM fraction was further ultracentrifuged at 15,0006g for 30 min

and then, the resultant pellet was saved for the SPM fraction. After

addition of 0.5% TX-100, the sample was chilled on ice for 15 min

and then centrifuged at 35,0006g for 20 min. The resultant

supernatant and pellet were saved. The pellet was further treated

with 1% TX-100 on ice for 15 min and then centrifuged 201,8006g

for 1 h and the resultant supernatant and pellet were saved for

western blotting.

Electrophysiology
For recording of the mEPSC, the culture medium was

exchanged for a saline solution containing 168 mM NaCl,

2.4 mM CaCl2, 1 mM MgCl2, 10 mM glucose, 10 mM HEPES,

0.5 mM TTX, 100 mM APV and 50 mM Bicuculline (pH 7.3), as

reported previously [15,19]. The patch electrode (4–6 MV) was

filled with the whole-cell pipette solution containing 140 mM

CsCl, 0.1 mM CaCl2, 5 mM MgCl2, 0.2 mM EGTA, 5 mM

ATP, and 10 mM HEPES (pH 7.3). The whole-cell recording

configuration from neurons expressing EGFP was achieved using

an EPC-7 amplifier (HEKA, Germany) and a Digidata 1200

acquisition board (Axon Instruments). The membrane potential

was clamped at 270 mV and +50 mV, and the signals were

filtered at 10 kHz with a gain set of 0.5 mV/pA for 40 s recording

periods. In all instances, the cells were excluded from the analysis if

a leak current .200 pA was observed. The membrane resistance

(Rm), series resistance (Rs), and membrane capacitance (Cm) were

monitored. Only those recordings that had an Rm.125 MV and

an Rs,15 MV were included in the analysis (the mean Rm, Rs,

and Cm did not differ (two tailed t-test; P.0.05) among or within

cells that were compared; CNQX (50 mM), an AMPAR

antagonist, was bath-applied during a subset of recordings in

order to determine that the detected mEPSC events were

mediated by the AMPARs). The frequency, amplitude, rise time,

and decay time of mEPSC were measured for a period of 40 s.

mEPSCs were detected by setting the amplitude threshold to

background as 3 times the background noise level (In all

electrophysiological experiments, a similar amount of data was

acquired from scramble and Tmub1/HOPS-RNAi neurons on

the same day). All electrophysiological experiments were per-

formed from at least 3 different platings of neurons from 2

different transfections. Rectification index (RI) was determined as

the mean amplitude of the mEPSC at positive holding potential

(+50 mV) divided by the mean amplitude of the mEPSC at

negative holding potential (270 mV).

Cell culture and immunocytochemistry
Hippocampal neurons were prepared as described [19]. The

cultured cells were transfected with 1 mg of DNA using

Lipofectamine 2000 (Invitrogen, USA) on 13–14 DIV and were

used on 15–16 DIV for immunostaining and electrophysiological

recordings. Immunocytochemistry was performed as described

[50] with some modifications. Briefly, cells were fixed with 4%

paraformaldehyde/4% sucrose/phosphate-buffered saline (PBS)

for 20 min at room temperature (RT) and then washed three times

with PBS for 5 min. The cells were permeabilized with 0.1% TX-

100/ PBS for 10 min at RT and blocked with blocking reagent

(5% goat/1% BSA/0.1% NaN3/0.1% TX-100/PBS) for 30 min

at RT and incubated with primary antibody diluted with blocking

reagent for O/N at 4uC. After washing the primary antibody three

times with PBS for 5 min, the cells were incubated with secondary

antibody diluted with blocking reagent and then washed with PBS

three times for 10 min.

For endogenous AMPAR staining, live hippocampal neurons

were labeled for 10 min at 37uC with an antibody (10 mg/ml)

directed against the extracellular region of either of the AMPAR

subunits GluR1 and GluR2. After washing, the neurons were fixed

for 8 min at RT and were washed with PBS. Then, the neurons

were permeabilized for staining the presynaptic proteins VAMP2

and synaptophysin.

For the recycling assay, live neurons were surface labeled with

mouse anti-GluR2 or anti-GluR1 antibodies, washed, and

returned to the incubator for another 10 min to allow internal-

ization. After the incubation, the antibodies remaining on the

surface were stripped using an acid buffer (0.5 M NaCl/0.2 M

acetic acid) on ice for 4 min [51]. The medium was then replaced

with the culture medium and was returned to the incubator to

allow resurfacing of the internalized receptor/antibody complex.

Finally, the neurons were fixed and stained with Alexa 633-

conjugated anti-mouse IgG antibody for 30 min at RT under

impermeable conditions. Then, for the visualization of intracellu-

lar GluR2, the cells were permeabilized and stained with Alexa

568 conjugated anti-mouse IgG antibody for another 30 min

under permeable conditions. All the recycling assays of GluR2

were performed at least three times, and the recycling assays of

GluR1 were performed two times.

The immunostaining of internalized GluR2 and Tmub1/

HOPS in Figure 7 was performed as described [31] with some

modifications. Briefly, neurons were incubated for 1 h at 37uC
with 2 mM TTX and for 10 min with TTX and anti-GluR2

antibody to label surface GluR2. Neurons were washed and then

stimulated with 0 or 25 mM NMDA/TTX for 3 min, and then

washed and further incubated for the indicated durations. Neurons

were washed with PBS/30 mM glycine pH 2.5 to remove the

remaining surface label, fixed, and immunolabeled using antibod-

ies against Tmub1/HOPS or VAMP2.

Image analysis
The images were captured on FluoView FV1000 (Olympus,

Tokyo, Japan) or LSM510 version 3.2 (Carl Zeiss, Jena, Germany)

confocal laser-scanning microscope and were analyzed using the

FV1000 and LSM510 software. For picture presentations, seven
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optical sections acquired at 0.58 mm intervals were assembled as a Z-

stack projection or a single section was used. For the image analysis,

only a single section, which corresponded to a section at almost the

same level relative to the upper and lower extremities, was used. For

the quantitative analysis of synaptic AMPAR, presynaptic marker-

positive puncta were defined as synaptic puncta and the fluorescence

intensity of the puncta colocalized or attached to the synaptic puncta

were measured. The fluorescence intensity was normalized by the

AMPAR immunofluorescence intensity of EGFP-overexpressing

neurons. For the quantitative analysis in the recycling assay, a 20-mm

length of dendrites within an 80-mm radius from the center of the cell

body was measured. The measured fluorescence intensity was

normalized by the internalized AMPAR, in the scramble-transfected

neurons or EGFP-overexpressing neurons during the first 10 min.

For analyzing colocalization in Figure 7, colocalization was defined

as the pixels that are positive for both GluR2 and Tmub1/HOPS or

VAMP2. The weighted colocalization coefficient in the Y-axis of the

graph corresponds to the value of the colocalized pixels, which reflect

the intensity of the pixel, divided into the sum of the Tmub1/HOPS

or VAMP2 pixels that reflect the intensity.

Immunoprecipitation
For the immunoprecipitation assay of endogenous proteins, two

whole mouse brains were dissected and homogenized in 10

volumes (of brain tissues) of a brain lysis buffer containing 20 mM

Tris-HCl (pH 7.4), 100 mM NaCl, 1% Triton X-100, and

protease inhibitors, using a glass-Teflon homogenizer at

3000 rpm610 strokes at 4uC. Sonication was performed 6 times

for 10 s each. Following ultracentrifugation at 100,0006g for

30 min, the supernatant was used for immunoprecipitation. The

lysate was incubated with protein G-Sepharose beads for 1 h at

4uC to clarify nonspecific binding. Further, 10 mg of the anti-

Tmub1/HOPS antibody or control rabbit IgG was added to 2 mg

of the clarified supernatant. After incubation for 2 h at 4uC, 20 ml

of protein G-Sepharose beads were added followed by further

incubation for 1.5 h at 4uC. The beads were then spun down and

washed 3 times with 6 volumes of the IP buffer. Immunoprecip-

itation experiments were performed at least 3 times.

Supporting Information

Table S1 FANTOM3 expression profile of mouse UBLs. The

expression of 57 UBLs, whose Pfam ubiquitin scores were higher

than 1.0, was investigated by using the FANTOM3 database.

Among them, 28 UBLs were revealed to have expression in the

tissue containing neurons (bold). Tmub1/HOPS is written with

bold italic characters. Abbreviations: adp, adipose; asN, activated

spleen from NOD.Cz Idd3; cor, cortex; cqd, corpora quadrige-

mina; crb,cerebellum; edr, embryonic body below diaphragm

region; eye, eyeball; fte, in vitro fertilized eggs; hed, head; hip,

hippocampus; hrt, heart; htl, hypothalamus; kid, kidney; Lbm, LP

S-treated bone marrow; liv, liver; lng, lung; mob, medulla

oblongata; oau, ovary and uterus; pcr, pancreas; plc, placenta;

prh, parthenogenote; sin, small intestine; skn, skin; spc, spinal

cord; spg, sympathetic ganglion; spl, spleen; stm, stomach; tes,

testis; thy, thymus; ton, tongue; vcr, visual cortex; wbd, whole

body; wds, wolffian duct includes surrounding region.

Found at: doi:10.1371/journal.pone.0002809.s001 (0.09 MB

DOC)
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