12 research outputs found

    Different abscisic acid-deficient mutants show unique morphological and hydraulic responses to high air humidity

    Get PDF
    High relative humidity (RH) perturbs plant growth, stomatal functioning and abscisic acid (ABA) homeostasis, but the role of ABA in this physiological regulation is equivocal. To determine the role(s) of ABA in plant responses to high RH, wild-type (WT) tomato and barley plants and their respective ABA-deficient mutants flacca and Az34 (which are mutated in the same locus of the ABA biosynthesis pathway) were grown in contrasting RHs (60% and 90%) to measure biomass partitioning, stomatal traits and water relations. Surprisingly, growth RH did not affect foliar ABA levels in either species. While Az34 showed similar stomatal size and density as WT plants, flacca had larger and more abundant stomata. High RH increased stomatal size in tomato, but decreased it in barley, and decreased stomatal density in tomato, but not in barley. Altered stomatal responses in ABA-deficient plants to high RH had little effect on tomato photosynthesis, but Az34 barley showed lower photosynthesis. ABA deficiency decreased relative shoot growth rate (RGRSHOOT) in both species, yet this was counteracted by high RH increasing leaf water status in tomato, but not in barley. High RH increased RGRSHOOT in flacca, but not in WT tomatoes, while having no effect on RGRSHOOT in barley, but affecting barley net assimilation rate, leaf area ratio (LAR) and specific leaf area in an ABA-dependent manner. ABA-RH interaction affected leaf development in tomato only. Thus, different crop species show variable responses to both high RH and ABA deficiency, making it difficult to generalise on the role of ABA in growth regulation at contrasting RHs. © 2021 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society

    The Physics of the B Factories

    Get PDF

    Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe

    Get PDF
    Long-term fire experiments in savannnas are rare, given the difficulties and demands of operation. Controlled fire experiments date from colonial times in West Africa, although the largest and best-known is located in the Kruger National Park, South Africa. The achievements of these experiments are assessed from examples in Africa, South America and Australia. A less well-known experiment in Zimbabwe was sited at the Marondera Grassland Research Station and ran from 1953 to 1991. Some of the preliminary results on the impact of fire on vegetation are analysed and compared with further vegetation surveys in 2007. Studies on tree growth in this miombo savanna woodland indicate that the plots burned at three- and four-year intervals recovered to greater mean heights than the unburned control plots. There was no significant variation between treatments, suggesting that the few trees that did survive in the frequently burned plots were large specimens. Brachystegia and Julbernadia dominated the plots throughout and after the experiment. Basal area and stocking density were highest in the four-yearly burned plots but there was a high variability throughout the experiment, suggesting that many trees may have attained heights and bark thicknesses sufficient to protect from fire damage. Fire also affected the composition of the herbaceous plant community, but not the number of species. By the end of the experiment some grass and sedge species had flourished while others revealed greater susceptibility to fire, and fire-tolerant species predominated in the most frequently burned areas. The experimental design appeared to cope well with the variability between plots and indicated the soundness of the initial design and its implementation
    corecore