3,058 research outputs found

    Microscopy of glazed layers formed during high temperature sliding wear at 750C

    Get PDF
    The evolution of microstructures in the glazed layer formed during high temperature sliding wear of Nimonic 80A against Stellite 6 at 750 ◦C using a speed of 0.314ms−1 under a load of 7N has been investigated using scanning electron microscopy (SEM), energy dispersive analysis by X-ray (EDX), X-ray diffraction (XRD) analysis, scanning tunnelling microscopy (STM) and transmission electron microscopy (TEM). The results indicate the formation of a wear resistant nano-structured glazed layer. The mechanisms responsible for the formation of the nano-polycrystalline glazed layer are discussed

    Vehicle-Infrastructure Cooperative Systems for Intersection Collision Avoidance: Driver Assessment Challenges

    Get PDF
    According to National Highway Traffic Safety Administration (NHTSA, 1998) data, there were 37,280 crashes that involved fatalities in 1997. Of these crashes, 8,571 were related to intersections. The fatal crashes at intersection were about evenly divided among noncontrolled intersections, signal controlled intersections, and stop sign controlled intersection. In addition to fatal crashes, almost 1 million injury crashes occur at intersections annually, and there are about 1.7 million police reported crashes at intersection each year. Various programs have proposed alternative countermeasures to reduce the number of crashes and fatalities at intersections. Conventional countermeasures such as protected left turn signals are effective and fairly well understood. However, these countermeasures alone will not eliminate intersection crashes because they do not address factors such as willful and unintentional red-light and stop sign violations, gap acceptance problems associated with older drivers, and sight distance problems at intersections that may not warrant traffic signals. The Federal Highway Administration is pursuing infrastructure based ITS solutions to address crashes at intersections. Initially these solutions will not require changes to vehicles. It is anticipated that in the future, some of these solutions could be integrated into in-vehicle ITS systems to enable either in-vehicle warnings or automated crash avoidance systems. Four types of intersection-infrastructure systems are envision: (1) traffic signal violation warning, (2) stop sign violation warning, (3) traffic signal left turn assistances, and (4) stop sign movement assistance. Each of these systems is described briefly, and a preliminary list of the driver behavior issues associated with each is identified. The challenge for the design of these systems is similar to that for other areas of highway and vehicle design – how to assess driver performance and behavior with these systems before the systems are fielded. Various assessment techniques are discussed in association with the advantages and disadvantages of each. The FHWA human-centered research approach for intersection-infrastructure solutions is presented

    Strategic Social Partnerships for Change: A Framework for Building Sustainable Growth in Developing Countries

    Get PDF
    [Excerpt] One of the hallmarks of an increasingly global world is the opportunity for wider access to consumers, capital, and information from around the world. To capture global customers, companies and countries must build relationships that enhance access to knowledge, information, capital, and other resources needed to grow and compete effectively. As the importance of international relationships among varied groups of private investors, providers of services, and governments increases, the ability of developing countries to compete often is determined by the quality of their relationships with strategic partners

    An optimized tuned mass damper/harvester device

    Get PDF
    Much work has been conducted on vibration absorbers, such as tuned mass dampers (TMD), where significant energy is extracted from a structure. Traditionally, this energy is dissipated through the devices as heat. In this paper, the concept of recovering some of this energy electrically and reuse it for structural control or health monitoring is investigated. The energy-dissipating damper of a TMD is replaced with an electromagnetic device in order to transform mechanical vibration into electrical energy. That gives the possibility of controlled damping force whilst generating useful electrical energy. Both analytical and experimental results from an adaptive and a semi-active tuned mass damper/harvester are presented. The obtained results suggest that sufficient energy might be harvested for the device to tune itself to optimise vibration suppression

    Coupled out of plane vibrations of spiral beams

    Get PDF
    Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials ConferenceAn analytical method is proposed to calculate the natural frequencies and corresponding mode shape functions of an Archimedean spiral beam. The deflection of the beam is due to both bending and torsion, which makes the problem coupled in nature. The governing partial differential equation and the boundary conditions are derived using Hamilton's principle. The vibration problem of a constant radius curved beam is solved using a general exponential solution with complex coefficients. Two factors make the vibrations of spirals different from oscillations of constant radius arcs. The first is the presence of terms with derivatives of the radius in the governing equations of spirals and the second is the fact that variations of radius of the beam causes the coefficients of the differential equations to be variable. It is demonstrated, using perturbation techniques that the R′ terms have negligible effect on the structure's dynamics. The spiral is then approximated with many merging constant-radius curved sections joint together to consider the slow change of radius along the spiral. The natural frequencies and mode shapes of two spiral structures have been calculated for illustration

    Riccati parameter modes from Newtonian free damping motion by supersymmetry

    Full text link
    We determine the class of damped modes \tilde{y} which are related to the common free damping modes y by supersymmetry. They are obtained by employing the factorization of Newton's differential equation of motion for the free damped oscillator by means of the general solution of the corresponding Riccati equation together with Witten's method of constructing the supersymmetric partner operator. This procedure leads to one-parameter families of (transient) modes for each of the three types of free damping, corresponding to a particular type of %time-dependent angular frequency. %time-dependent, antirestoring acceleration (adding up to the usual Hooke restoring acceleration) of the form a(t)=\frac{2\gamma ^2}{(\gamma t+1)^{2}}\tilde{y}, where \gamma is the family parameter that has been chosen as the inverse of the Riccati integration constant. In supersymmetric terms, they represent all those one Riccati parameter damping modes having the same Newtonian free damping partner modeComment: 6 pages, twocolumn, 6 figures, only first 3 publishe

    The Effect of Impingement on Transitional Behavior in Underexpanded Jets

    Get PDF
    An investigation into the development of flow unsteadiness in impinging axisymmetric underexpanded jets has been conducted at NASA Langley Research Center. The study has examined the effect of an impingement target placed at various distances and angles on transitional behavior of such jets. Two nozzles, with exit Mach numbers of 1.0 and 2.6, were used in this investigation. Planar laser-induced fluorescence of nitric oxide (NO PLIF) has been used to identify flow unsteadiness and to image transitional and turbulent flow features. Measurements of the location of the onset of various degrees of unsteady flow behavior have been made using these PLIF images. Both qualitative and quantitative comparisons are presented to demonstrate the observed effects of impingement and flow parameters on the process of the transition to turbulence. The presence of the impingement target was found to significantly shorten the distance to transition to turbulence by up to a factor of approximately three, with closer targets resulting in slightly shorter distance to transition and turbulence. The location at which the flow first exhibits unsteadiness was found to have a strong dependence on the presence and location of key flow structures. This paper presents quantitative results on transition criteria for free and impinging jets

    Identification of Instability Modes of Transition in Underexpanded Jets

    Get PDF
    A series of experiments into the behavior of underexpanded jet flows has been conducted at NASA Langley Research Center. Two nozzles supplied with high-pressure gas were used to generate axisymmetric underexpanded jets exhausting into a low-pressure chamber. These nozzles had exit Mach numbers of 1 and 2.6, though this paper will present cases involving only the supersonic nozzle. Reynolds numbers based on nozzle exit conditions ranged from about 300 to 22,000, and nozzle exit-to-ambient jet pressure ratios ranged from about 1 to 25. For the majority of cases, the jet fluid was a mixture of 99.5% nitrogen seeded with 0.5% nitric oxide (NO). Planar laser-induced fluorescence (PLIF) of NO is used to visualize the flow, visualizing planar slices of the flow rather than path integrated measurements. In addition to revealing the size and location of flow structures, PLIF images were also used to identify unsteady jet behavior in order to quantify the conditions governing the transition to turbulent flow. Flow structures that contribute to the growth of flow instabilities have been identified, and relationships between Reynolds number and transition location are presented. By highlighting deviations from mean flow properties, PLIF images are shown to aide in the identification and characterization of flow instabilities and the resulting process of transition to turbulence
    • …
    corecore