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Abstract: The evolution of microstructures in the glazed layer formed during high 

temperature sliding wear of Nimonic 80A against Stellite 6 at 750 C using a speed 

of 0.314 ms−1 under a load of 7N has been investigated using scanning electron 

microscopy (SEM), energy dispersive analysis by X-ray (EDX), X-ray diffraction 

(XRD) analysis, scanning tunnelling microscopy (STM) and transmission electron 

microscopy (TEM). The results indicate the formation of a wear resistant nano-

structured glazed layer. The mechanisms responsible for the formation of the nano-

polycrystalline glazed layer are discussed. 
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1. Introduction 

 
High temperature wear is a serious problem in many situations-power generation, transport, 

materials processing and turbine engines [1-4]. The problem of high temperature wear is 

accentuated due to faster kinetics of surface oxidation, loss of mechanical hardness and 

strength of the materials constituting the contacting surfaces and change in adhesion between 

these surfaces caused by the joint action of temperature and tribological parameters. Efforts 

have been made to prevent wear using oxidation resistant and thermally stable materials and 

coatings and materials with preoxidised surfaces [1-5]. However, the conditions associated with 

the presence of high temperature severely restricts the choice of coatings and materials that 

can be used to prevent or minimize high temperature wear [1,2]. 

One of the most elegant methods of generating wear resistant surfaces on coated and 

uncoated materials is to take advantage of the important events, such as oxidation, debris 

generation and elemental transfer between the contacting surfaces which accompany the 

process of high temperature wear [1,2,6]. These events under certain conditions of temperature, 

pressure and speed lead to the formation of surface glazes on the contacting surfaces which 

can provide enhanced resistance to further wear [1,2,6]. Although the phenomenon of glaze 

formation and the general issues relating to wear at elevated temperatures have been studied 

[1,2,6–10], it is still difficult to predict the precise conditions which promote the formation of 

glazed surfaces. A step forward would be to gain detailed knowledge of the micro-scale and 

nano-scale structures of these layers, so that the mechanisms of glaze layer formation can be 

established. This project on high temperature wear was initiated with this objective in mind. This 

paper particularly relates to the study of wear at 750 C. 

 

2. Experimental 

 

The compositions of materials used for the experimental work are detailed in Table 1. 

Table 1 Nominal compositions of alloys (in wt.%) 

 Fe Ni Cr Al Ti Mn W Co Si C 

Stellite 6  2.5  2.5 27 - - 1 5 60 1 1 

Nimonic 80A 0.7 75.8 19.4 1.4 2.5 - - - 0.1 0.08 

 

All high temperature wear tests were carried out on a high temperature reciprocating wear 

rig in open air, as illustrated in Fig. 1. Details of the high temperature wear machine used have 

been described previously [1,2]. Basically, the machine was a block-on-cylinder arrangement 

(the cylinder being the counterface and the block being the sample). A variable    speed electric 

motor rotated the shaft and connected counterface (Stellite 6) of diameter 50 mm and length 50 

mm at various speeds. Samples of Nimonic 80A, of dimensions 5mm × 5mm × 45 mm were 



IA Inman, S Datta, HL Du, et al, Wear 254, 2003, 461-467. 
 

3 

 

held against the counterface using the sample arm in reciprocating motion, with reciprocation at 

three cycles  

 

Fig. 1. Reciprocating high temperature block-on-cylinder wear rig, as used in the experimental 

programme. 

per minute with a constant stroke of 12 mm. The tests were carried out at a sliding speed of 

0.314ms−1 (this being the speed of rotation of the counterface) under a load of 7N at various 

temperatures. Attention in this paper has been focused on the situation at 750 C. 

The coefficient of friction data were collected by a Melbourne type TRP-50 torque 

transducer appropriately connected to the wear rig. 

The surface layers produced at 750 C were characterized at two levels. The evolution of 

the microstructures generated was characterised at the micro-scale level using scanning 

electron microscopy (SEM), energy dispersive analysis by X-ray (EDX) and X-ray diffraction 

(XRD) analysis. Nano-scale information on the surface layers produced was obtained using 

mainly transmission electron microscopy(TEM); scanning tunnelling microscope (STM) was 

used to complement the TEM studies.   

 

 

Fig. 2. Weight change vs. temperature for 

Nimonic 80A against Stellite 6 at 750 
◦
C. 

 

3. Results 

 

Fig. 2 displays the wear data on Nimonic 80A / Stellite 6system as a function of 

temperature under a load of 7 N at 0.314 ms−1 for total sliding distance of 4522 m. Weight 

changes were extremely low for all temperatures, with the largest mean change being 0.002(4) 
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g at 270 C. Slight gains were observed for all test temperatures between 450 and 750 C, with 

the maxima in mean values at 510 and 630 C of 0.001(1) g and 0.001(4) g, respectively. The 

w e a r  d a t a  a t  

 

Fig. 3. Coefficient of friction vs. time for 

Nimonic 80A vs. Stellite 6 at 750 C. 

 

Fig. 4. EDX surface spectrum for Nimonic 

80A vs. Stellite 6 at 750 C. 

 

570 C shows a departure from the general trend. Repeated experiments confirmed the data at 

570 C needing further attention. This paper focuses attention on the situation at 750 C. 

The coefficient of friction values measured during each of the tests showed an initial period 

of rapid change, before in many cases settling down into a ‘steady state’ situation with reduced 

variation. The measured friction coefficients in Fig. 3 show no significant changes with time after 

an initial peak at the very beginning of testing. This indicates that the onset of the formation of a 

glaze layer was virtually almost immediate giving, the lack of variation indicating a “steady state” 

in the values of the friction coefficients due to the presence of the glaze on the worn surface. 

The spectrum by EDX analysis of the surface generated under sliding wear at 750 C for 4 

h, shown in Fig. 4, reveals the dominant presence of Co, Ni, Cr and O on the glaze surface. 

Quantification of the results, on average, gives Co = 34.2, Cr = 36.2, Ni = 16.7, Si = 3.8 and Fe 

= 1.3 (at.%). However, the presence of these elements was also confirmed by TEM EDS which 

showed some location-to-location variation. The dominant phases identified by XRD 

includedCoCr2O4 and Ni2.9Cr0.7Fe0.36 (Fig. 5). 
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Fig. 6 illustrates a cross-sectional composite transmission electron micrograph of the 

surface formed during wear test at 750 C. The micrograph demonstrates the presence of the 

surface layer (glazed surface), the deformed substrate and the glazed layer/substrate interface. 

The wear- 

 

Fig. 5. XRD pattern for Nimonic 80A vs. 

Stellite 6 at 750 C: (A) 

Ni2.9Cr0.7Fe0.36; (B) CoCr2O4. 

 

Fig. 6. TEM bright field image: wear-induced polycrystalline glaze layer and deformation of substrate. 

 

affected region(total thickness ∼3 µm) consisted of three layers-the topmost layer (the glaze 

layer) showed the presence of uniform grain structure of size 5-15 nm; some of the grains 

displaying contrast-the dislocation density in this area was low. The interfacial layer consisted of 

grains of size 10–20 nm and had a higher dislocation density. The layer just beneath the 

interfacial layer showed sub-surface deformation and the presence of elongated grains. The 

structure of the glazed layer and the selected area diffraction (SAD) pattern are separately 

presented in Fig. 7. The SAD pattern consisted of spots arranged in concentric circles indicating 

the presence of small grains with high angle boundaries, multiple boundaries and large 

misorientations (formation of misorientated lattice-fragmentation). The poorly defined irregular 

boundaries indicate non-equilibrium high energy configuration. 
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The indexed SAD pattern also revealed the presence of oxides of Ni, Cr and Co (indexing 

not shown here). The dark field images further elaborate on the grain structure of the glazer 

layer. The occurrence of sub-surface deformation is illustrated in Fig. 8. Dislocations have been 

observed in the deformed substrate. These dislocations were present as networks inside the  

 

 

Fig. 7. TEM morphological and structural details of glaze layer: (a) bight field image; (b) dark field image; 

and (c) selected area diffraction. 

 

Fig. 8. TEM image showing interface of glaze layer/deformed substrate. 

deformed (elongated) grains. It was evidenced that shearing deformation took place in the 

substrate as a response to the sliding process. 

 

4. Discussion 

 

The present results have clearly indicated the formation of a nano-structured glaze oxide 

layer during high temperature sliding wear of the system Nimonic 80A/ Stellite 6 at 750 C using 

a sliding speed of 0.314 ms−1 under a load of 7N for a sliding distance of 4522 m. The creation 

of nano-structures is also confirmed by the STM topography, as shown in Fig. 9. The grain sizes 

varied from 5 to 10 nm. The thickness of the grains was ∼10 nm. These results together with 

the wear data have demonstrated that such a nano-structure surface was extremely effective in 
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conferring high resistance to wear. The formation of nano-structured surfaces and the 

effectiveness of such surfaces in conferring improved wear resistance are the two main issues 

emerging from this work that need consideration and elaboration. 

It has been indicated by various authors [10,11] that in many systems surfaces with ultra-

fine structure are generated during high temperature sliding wear. Mechanical mixing involving 

repeated welding, fracturing and re-welding of the debris generated from both contacting 

surfaces is responsible for the generation of the ultra-fine structured surfaces. However, very 

few studies have investigated in detail the evolution of microstructures and defect structures 

generated accompanying the processes of high temperature sliding wear. Detailed TEM studies 

carried out here allow understanding of the mechanisms of formation of wear resistant nano-

structured surfaces. 

It is clear from the SEM, XRD and TEM analysis that the initial processes responsible for 

generating the glazed layer involved: (i) deformation of the surface, (ii) intermixing of the debris 

generated from the wearing and the counterface surfaces, (iii) oxidation, (iv) further mixing and 

(v) repeated welding and fracture. These processes were aided by high temperature oxidation 

and diffusion. The positron annihilation studies confirmed the presence of vacancy cluster 

consisting of five valences [12]. 

The next step involves deformation of oxides and generation of dislocations leading to the 

formation of sub-grains. These sub-grains are then further refined with increasing misorientation 

giving nano-structured grains with high angle boundaries (a process called “fragmentation”) and 

non-equilibrium state indicated by poorly defined and irregular grain boundaries. High internal 

stress is created inside the grains—dislocation density and arrangement depending on the grain 

size; smaller grains contained fewer dislocations. The process leads to the formation of high 

energy grain boundaries with a high defect density [13–17]. 

The superior wear resistance of this nano-structured glaze layer can be ascribed to several 

factors. The nano-structured glaze layer generated did not suffer Hall-Petch softening, as 

illustrated in Fig. 10. However, there has also not been a significant degree of work-hardening 

believed to be associated with the difficulties in generating dislocations in nano-sized grains 

[18,19]. These two factors together with improved fracture toughness, expected to be conferred 

by the presence of nano-polycrystalline structure, have made debris generation an inefficient 

process. 

 

5. Summary 

 

The high temperature sliding wear of Nimonic 80Aagainst Stellite 6 as a counterface alloy 

allowed the development of a wear resistant nano-structured glaze layer. A process called 

“fragmentation” involving deformation, generation of dislocations, formation of sub-grains and 

their increasing refinement causing increasing misorientation, was responsible for the formation 

of nano-structured grains. The improved wear resistance of such a layer has been attributed to 

the absence of Hall-Petch softening and the lack of a significant degree of work-hardening and 

enhanced fracture toughness of the surface. 
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