48 research outputs found
Recommended from our members
Extent of differential allelic expression of candidate breast cancer genes is similar in blood and breast.
INTRODUCTION: Normal gene expression variation is thought to play a central role in inter-individual variation and susceptibility to disease. Regulatory polymorphisms in cis-acting elements result in the unequal expression of alleles. Differential allelic expression (DAE) in heterozygote individuals could be used to develop a new approach to discover regulatory breast cancer susceptibility loci. As access to large numbers of fresh breast tissue to perform such studies is difficult, a suitable surrogate test tissue must be identified for future studies. METHODS: We measured differential allelic expression of 12 candidate genes possibly related to breast cancer susceptibility (BRCA1, BRCA2, C1qA, CCND3, EMSY, GPX1, GPX4, MLH3, MTHFR, NBS1, TP53 and TRXR2) in breast tissue (n = 40) and fresh blood (n = 170) of healthy individuals and EBV-transformed lymphoblastoid cells (n = 19). Differential allelic expression ratios were determined by Taqman assay. Ratio distributions were compared using t-test and Wilcoxon rank sum test, for mean ratios and variances respectively. RESULTS: We show that differential allelic expression is common among these 12 candidate genes and is comparable between breast and blood (fresh and transformed lymphoblasts) in a significant proportion of them. We found that eight out of nine genes with DAE in breast and fresh blood were comparable, as were 10 out of 11 genes between breast and transformed lymphoblasts. CONCLUSIONS: Our findings support the use of differential allelic expression in blood as a surrogate for breast tissue in future studies on predisposition to breast cancer.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
PMC42, a breast progenitor cancer cell line, has normal-like mRNA and microRNA transcriptomes.
INTRODUCTION: The use of cultured cell lines as model systems for normal tissue is limited by the molecular alterations accompanying the immortalisation process, including changes in the mRNA and microRNA (miRNA) repertoire. Therefore, identification of cell lines with normal-like expression profiles is of paramount importance in studies of normal gene regulation. METHODS: The mRNA and miRNA expression profiles of several breast cell lines of cancerous or normal origin were measured using printed slide arrays, Luminex bead arrays, and real-time reverse transcription-polymerase chain reaction. RESULTS: We demonstrate that the mRNA expression profiles of two breast cell lines are similar to that of normal breast tissue: HB4a, immortalised normal breast epithelium, and PMC42, a breast cancer cell line that retains progenitor pluripotency allowing in-culture differentiation to both secretory and myoepithelial fates. In contrast, only PMC42 exhibits a normal-like miRNA expression profile. We identified a group of miRNAs that are highly expressed in normal breast tissue and PMC42 but are lost in all other cancerous and normal-origin breast cell lines and observed a similar loss in immortalised lymphoblastoid cell lines compared with healthy uncultured B cells. Moreover, like tumour suppressor genes, these miRNAs are lost in a variety of tumours. We show that the mechanism leading to the loss of these miRNAs in breast cancer cell lines has genomic, transcriptional, and post-transcriptional components. CONCLUSION: We propose that, despite its neoplastic origin, PMC42 is an excellent molecular model for normal breast epithelium, providing a unique tool to study breast differentiation and the function of key miRNAs that are typically lost in cancer.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping.
BACKGROUND: The increasing trend for incorporation of biological sample collection within clinical trials requires sample collection procedures which are convenient and acceptable for both patients and clinicians. This study investigated the feasibility of using saliva-extracted DNA in comparison to blood-derived DNA, across two genotyping platforms: Applied Biosystems Taqman™ and Illumina Beadchip™ genome-wide arrays. METHOD: Patients were recruited from the Pharmacogenetics of Breast Cancer Chemotherapy (PGSNPS) study. Paired blood and saliva samples were collected from 79 study participants. The Oragene DNA Self-Collection kit (DNAgenotek®) was used to collect and extract DNA from saliva. DNA from EDTA blood samples (median volume 8 ml) was extracted by Gen-Probe, Livingstone, UK. DNA yields, standard measures of DNA quality, genotype call rates and genotype concordance between paired, duplicated samples were assessed. RESULTS: Total DNA yields were lower from saliva (mean 24 μg, range 0.2-52 μg) than from blood (mean 210 μg, range 58-577 μg) and a 2-fold difference remained after adjusting for the volume of biological material collected. Protein contamination and DNA fragmentation measures were greater in saliva DNA. 78/79 saliva samples yielded sufficient DNA for use on Illumina Beadchip arrays and using Taqman assays. Four samples were randomly selected for genotyping in duplicate on the Illumina Beadchip arrays. All samples were genotyped using Taqman assays. DNA quality, as assessed by genotype call rates and genotype concordance between matched pairs of DNA was high (>97%) for each measure in both blood and saliva-derived DNA. CONCLUSION: We conclude that DNA from saliva and blood samples is comparable when genotyping using either Taqman assays or genome-wide chip arrays. Saliva sampling has the potential to increase participant recruitment within clinical trials, as well as reducing the resources and organisation required for multicentre sample collection.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
The pitfalls of platform comparison: DNA copy number array technologies assessed
<p>Abstract</p> <p>Background</p> <p>The accurate and high resolution mapping of DNA copy number aberrations has become an important tool by which to gain insight into the mechanisms of tumourigenesis. There are various commercially available platforms for such studies, but there remains no general consensus as to the optimal platform. There have been several previous platform comparison studies, but they have either described older technologies, used less-complex samples, or have not addressed the issue of the inherent biases in such comparisons. Here we describe a systematic comparison of data from four leading microarray technologies (the Affymetrix Genome-wide SNP 5.0 array, Agilent High-Density CGH Human 244A array, Illumina HumanCNV370-Duo DNA Analysis BeadChip, and the Nimblegen 385 K oligonucleotide array). We compare samples derived from primary breast tumours and their corresponding matched normals, well-established cancer cell lines, and HapMap individuals. By careful consideration and avoidance of potential sources of bias, we aim to provide a fair assessment of platform performance.</p> <p>Results</p> <p>By performing a theoretical assessment of the reproducibility, noise, and sensitivity of each platform, notable differences were revealed. Nimblegen exhibited between-replicate array variances an order of magnitude greater than the other three platforms, with Agilent slightly outperforming the others, and a comparison of self-self hybridizations revealed similar patterns. An assessment of the single probe power revealed that Agilent exhibits the highest sensitivity. Additionally, we performed an in-depth visual assessment of the ability of each platform to detect aberrations of varying sizes. As expected, all platforms were able to identify large aberrations in a robust manner. However, some focal amplifications and deletions were only detected in a subset of the platforms.</p> <p>Conclusion</p> <p>Although there are substantial differences in the design, density, and number of replicate probes, the comparison indicates a generally high level of concordance between platforms, despite differences in the reproducibility, noise, and sensitivity. In general, Agilent tended to be the best aCGH platform and Affymetrix, the superior SNP-CGH platform, but for specific decisions the results described herein provide a guide for platform selection and study design, and the dataset a resource for more tailored comparisons.</p
Recommended from our members
Characterisation of microRNA expression in post-natal mouse mammary gland development.
BACKGROUND: The differential expression pattern of microRNAs (miRNAs) during mammary gland development might provide insights into their role in regulating the homeostasis of the mammary epithelium. Our aim was to analyse these regulatory functions by deriving a comprehensive tissue-specific combined miRNA and mRNA expression profile of post-natal mouse mammary gland development.We measured the expression of 318 individual murine miRNAs by bead-based flow-cytometric profiling of whole mouse mammary glands throughout a 16-point developmental time course, including juvenile, puberty, mature virgin, gestation, lactation, and involution stages. In parallel whole-genome mRNA expression data were obtained. RESULTS: One third (n = 102) of all murine miRNAs analysed were detected during mammary gland development. MicroRNAs were represented in seven temporally co-expressed clusters, which were enriched for both miRNAs belonging to the same family and breast cancer-associated miRNAs. Global miRNA and mRNA expression was significantly reduced during lactation and the early stages of involution after weaning. For most detected miRNA families we did not observe systematic changes in the expression of predicted targets. For miRNA families whose targets did show changes, we observed inverse patterns of miRNA and target expression. The data sets are made publicly available and the combined expression profiles represent an important community resource for mammary gland biology research. CONCLUSION: MicroRNAs were expressed in likely co-regulated clusters during mammary gland development. Breast cancer-associated miRNAs were significantly enriched in these clusters. The mechanism and functional consequences of this miRNA co-regulation provide new avenues for research into mammary gland biology and generate candidates for functional validation.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Measuring single cell divisions in human tissues from multi-region sequencing data
Both normal tissue development and cancer growth are driven by a branching process of cell division and mutation accumulation that leads to intra-tissue genetic heterogeneity. However, quantifying somatic evolution in humans remains challenging. Here, we show that multi-sample genomic data from a single time point of normal and cancer tissues contains information on single-cell divisions. We present a new theoretical framework that, applied to whole-genome sequencing data of healthy tissue and cancer, allows inferring the mutation rate and the cell survival/death rate per division. On average, we found that cells accumulate 1.14 mutations per cell division in healthy haematopoiesis and 1.37 mutations per division in brain development. In both tissues, cell survival was maximal during early development. Analysis of 131 biopsies from 16 tumours showed 4 to 100 times increased mutation rates compared to healthy development and substantial inter-patient variation of cell survival/death rates
Recommended from our members
MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype.
BACKGROUND: MicroRNAs (miRNAs), a class of short non-coding RNAs found in many plants and animals, often act post-transcriptionally to inhibit gene expression. RESULTS: Here we report the analysis of miRNA expression in 93 primary human breast tumors, using a bead-based flow cytometric miRNA expression profiling method. Of 309 human miRNAs assayed, we identify 133 miRNAs expressed in human breast and breast tumors. We used mRNA expression profiling to classify the breast tumors as luminal A, luminal B, basal-like, HER2+ and normal-like. A number of miRNAs are differentially expressed between these molecular tumor subtypes and individual miRNAs are associated with clinicopathological factors. Furthermore, we find that miRNAs could classify basal versus luminal tumor subtypes in an independent data set. In some cases, changes in miRNA expression correlate with genomic loss or gain; in others, changes in miRNA expression are likely due to changes in primary transcription and or miRNA biogenesis. Finally, the expression of DICER1 and AGO2 is correlated with tumor subtype and may explain some of the changes in miRNA expression observed. CONCLUSION: This study represents the first integrated analysis of miRNA expression, mRNA expression and genomic changes in human breast cancer and may serve as a basis for functional studies of the role of miRNAs in the etiology of breast cancer. Furthermore, we demonstrate that bead-based flow cytometric miRNA expression profiling might be a suitable platform to classify breast cancer into prognostic molecular subtypes.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype
Integrated analysis of miRNA expression and genomic changes in human breast tumors allows the classification of tumor subtypes
Chemical Entities of Biological Interest: an update
Chemical Entities of Biological Interest (ChEBI) is a freely available dictionary of molecular entities focused on ‘small’ chemical compounds. The molecular entities in question are either natural products or synthetic products used to intervene in the processes of living organisms. Genome-encoded macromolecules (nucleic acids, proteins and peptides derived from proteins by cleavage) are not as a rule included in ChEBI. In addition to molecular entities, ChEBI contains groups (parts of molecular entities) and classes of entities. ChEBI includes an ontological classification, whereby the relationships between molecular entities or classes of entities and their parents and/or children are specified. ChEBI is available online at http://www.ebi.ac.uk/chebi/. This article reports on new features in ChEBI since the last NAR report in 2007, including substructure and similarity searching, a submission tool for authoring of ChEBI datasets by the community and a 30-fold increase in the number of chemical structures stored in ChEBI
HES5 silencing is an early and recurrent change in prostate tumourigenesis.
Prostate cancer is the most common cancer in men, resulting in over 10 000 deaths/year in the UK. Sequencing and copy number analysis of primary tumours has revealed heterogeneity within tumours and an absence of recurrent founder mutations, consistent with non-genetic disease initiating events. Using methylation profiling in a series of multi-focal prostate tumours, we identify promoter methylation of the transcription factor HES5 as an early event in prostate tumourigenesis. We confirm that this epigenetic alteration occurs in 86-97% of cases in two independent prostate cancer cohorts (n=49 and n=39 tumour-normal pairs). Treatment of prostate cancer cells with the demethylating agent 5-aza-2'-deoxycytidine increased HES5 expression and downregulated its transcriptional target HES6, consistent with functional silencing of the HES5 gene in prostate cancer. Finally, we identify and test a transcriptional module involving the AR, ERG, HES1 and HES6 and propose a model for the impact of HES5 silencing on tumourigenesis as a starting point for future functional studies.The authors are grateful to study volunteers for their participation and
staff at the Welcome Trust Clinical Research Facility, Addenbrooke’s Clinical
Research Centre, Cambridge. They also thank the NIHR Cambridge
Biomedical Research Centre, the DOH HTA (ProtecT grant), and the
NCRI/MRC (ProMPT grant) for help with the bio-repository, The University
of Cambridge, Hutchison Whampoa Limited and Cancer Research UK for
funding. They are grateful to the CRUK Cambridge Institute Genomics and
Bioinformatics Core Facilities. Cross-validation of HES5 methylation
includes the use of data generated by the TCGA Research Network.This is the final version of the article. It was originally published in the Endocrine-Related Cancer, April 1, 2015 22 131-144 doi: 10.1530/ERC-14-0454