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Abstract
Prostate cancer is the most common cancer in men, resulting in over 10 000 deaths/year

in the UK. Sequencing and copy number analysis of primary tumours has revealed

heterogeneity within tumours and an absence of recurrent founder mutations, consistent

with non-genetic disease initiating events. Using methylation profiling in a series of multi-

focal prostate tumours, we identify promoter methylation of the transcription factor HES5

as an early event in prostate tumourigenesis. We confirm that this epigenetic alteration

occurs in 86–97% of cases in two independent prostate cancer cohorts (nZ49 and nZ39

tumour–normal pairs). Treatment of prostate cancer cells with the demethylating agent

5-aza-2 0-deoxycytidine increased HES5 expression and downregulated its transcriptional

target HES6, consistent with functional silencing of the HES5 gene in prostate cancer.

Finally, we identify and test a transcriptional module involving the AR, ERG, HES1 and HES6

and propose a model for the impact of HES5 silencing on tumourigenesis as a starting point

for future functional studies.
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Introduction
Current analysis of cancer genome sequencing has

revealed disease processes and genomic alterations that

may underlie disease initiation or evolution (Nik-Zainal

et al. 2012, Baca et al. 2013, Tarpey et al. 2013). These

approaches have identified and enumerated recurrently

mutated driver genes in several cancer types, such as KRAS

which is mutated in 93% of pancreatic cancers (Biankin
et al. 2012) and TP53 which is mutated in 96% of high-

grade serous ovarian cancers (Cancer Genome Atlas

Research Network 2011), 69% of oesophageal cancer

(Weaver et al. 2014) and over 50% of colorectal cancers

(Cancer Genome Atlas Network 2012). In contrast with

these highly recurrent mutations, a recent study of 112

aggressive primary prostate cancers has reported that the
sed under a Creative Commons
nported License.
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most significantly mutated gene (SPOP) was altered in only

13% of cases, with the next most commonly affected gene

TP53 affected in only 6% of prostate tumours (Barbieri

et al. 2012).

Therefore, while genome sequencing approaches have

provided important insights into the biology of prostate

cancer (Berger et al. 2011, Baca et al. 2013, Lindberg et al.

2013, Weischenfeldt et al. 2013) the high intra- and inter-

tumour heterogeneity coupled with the small samples

sizes may have limited the identification of genetic driver

events in primary tumours. Indeed, previous genome

sequencing studies have reported few common mutations

between different tumour foci within the same prostate

(Lindberg et al. 2013), highlighting marked intra-tumour

heterogeneity and the absence of a genetic founder

mutation. This complexity has led many groups to focus

on late-stage, aggressive disease with the aim of identify-

ing genomic events associated with disease progression

(Barbieri et al. 2012, Grasso et al. 2012). However, their

remain important unanswered questions over the early

stages of prostate tumour evolution where genetic events

appear to be for the most part heterogeneous. One notable

exception to this is gene fusions involving ETS (E26

transformation-specific) transcription factors that have

been found to occur in approximately half of all prostate

cancers (Tomlins et al. 2005, Perner et al. 2006). However,

these androgen receptor (AR)-driven gene fusions alone

are insufficient to initiate prostate tumours in disease

models (Carver et al. 2009, Chen et al. 2013) and may not

be early ‘founder’ events in disease evolution (Barry et al.

2007, Mertz et al. 2013, Minner et al. 2013).

Therefore current evidence would seem to suggest

that if a common initiating driver event exists it is

not genetic, implicating other mechanisms in disease

aetiology. In addition to somatic mutation several other

disease-initiating pathways have been proposed in pros-

tate cancer including germline predisposition (Kote-Jarai

et al. 2011, Eeles et al. 2013), telomere shortening

(Sommerfeld et al. 1996, Heaphy et al. 2013), chronic

inflammation (Elkahwaji et al. 2009, Caini et al. 2014),

metabolic stress (Freedland 2005, Kalaany & Sabatini

2009) and epigenetic alterations (Lee et al. 1994, Kanwal

et al. 2014). It is likely that non-genetic and genetic

alterations interact during tumourigenesis and several

studies have identified interactions between somatic

mutations and micro-environmental changes (Garcia

et al. 2014), inflammation (Kwon et al. 2014) and

metabolism (Kalaany & Sabatini 2009). Current tech-

nologies allow accurate identification and quantification

of epigenetic alterations and are therefore a tractable
http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-14-0454
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second line of enquiry to identify driver events in prostate

tumourigenesis.

We have recently identified a role for the enhancer of

split transcription factor HES6 in prostate cancer and AR

signalling (Ramos-Montoya et al. 2014). Herein, we

characterise an epigenetic alteration at the promoter of

the related HES5 gene, which has been recently reported in

a panel of genes that showed promise as a prostate cancer

marker in biopsy samples (Paziewska et al. 2014). We

profile this change in detail and show it to be an early

event in prostate cancer development and highly recur-

rent across three unrelated prostate tumour cohorts. We

then characterise an interaction between the epigenetic

silencing of HES5 and the expression of HES6 and provide

evidence for interactions with known oncogenic pathways

in prostate cancer (namely AR signalling and ERG gene

fusions), highlighting a transcriptional network that is

altered in prostate cancer development first by an

epigenetic change and then by a genomic rearrangement.
Materials and methods

Sample cohorts

In a series of four radical prostatectomy specimens, we

systematically dissected the whole prostates, identified

regions containing tumour and harvested 17 tumour-rich

samples from 13 spatially separated tumour cores (median

46% tumour, interquartile range (IQR) 36–62%), four

adjacent benign samples and three whole-blood samples

(Fig. 1a and Supplementary Figure 1a, see section on

supplementary data given at the end of this article). Each

tumour core was taken from a 5 mm tissue slice and the

tumour content of samples used for DNA extraction was

assessed by a pathologist using H&E staining of immediately

adjacent sections (Warren et al. 2013). From two such cores,

we also took three sets of sections for DNA extraction to

allow assessment of heterogeneity within cores in addition

to the spatial heterogeneity within and between cancerous

prostates (Supplementary Figure 1a). These samples were

used for global methylation profiling using Infinium

HumanMethylation450 arrays (see below for details).

In a separate cohort of 39 matched prostate tumour

and adjacent benign samples, we performed targeted

bisulphite sequencing of the HES5 promoter, to assess

the frequency of HES5 hypermethylation in prostate

cancer. This analysis provides a promoter-wide view of

DNA methylation changes at the HES5 promoter (in

contrast to the limited number of CpGs assessed using

methylation profiling arrays).
Published by Bioscientifica Ltd.
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Figure 1

HES5 promoter methylation is an early event in prostate tumourigenesis.

(A) Representation of sections through four cancerous prostates from

which multiple tumour cores (T1–T5) and adjacent benign cores (N1) were

taken for methylation analysis. Regions in purple indicate histologically

malignant foci and different shades of purple indicate tumour foci that

appeared unconnected in 3D-sectioning. Sample keys provided are ICGC

Prostate UK IDs. (B) Heatmap showing the median tumour over benign

methylation changes at regions in the promoter regions of eight candidate

genes. (C) Boxplots showing the methylation status at the promoter region

of HES5 in the cohort of prostate tumours with multiple tissue cores,

adjacent benign and blood DNA samples. Boxplots depict quartiles for

probes within promoter region genomic windows, error bars denote

95% CI and data points are shown for values outside 95% CIs. (D and E)

Genomic views of DNA methylation in tumour cores compared with

adjacent benign tissue for (D) the HES5 gene promoter region and

(E) the methylation-positive control GSTP1 gene promoter. Plots show the

methylation profiles from multiple tumour foci for Case-006, data are

presented as log2 ratio of tumour over benign. Gene promoters and

orientation are annotated at the top of each plot.
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In an unrelated, larger cohort of prostate cancers

with publicly available methylation array data (nZ304

tumours, nZ49 matched normal samples) (Weinstein

et al. 2013), we assessed the recurrence of HES5 promoter

methylation.
DNA methylation profiling in blood, benign prostate and

multiple spatially separate tumour foci

Clinical samples for analysis were collected from prosta-

tectomy patients with full research consent at the

Addenbrooke’s Hospital, Cambridge, UK. The prostates

were sliced and processed as described previously (Warren

et al. 2013). A single 5 mm slice of the prostate was selected

for research purposes. Tissue cores of 4 mm or 6 mm were

taken from the slice and frozen. The frozen cores were

mounted vertically and sectioned transversely giving a

single 5 mm frozen section for H&E staining followed by

6!50 mm sections for DNA preparation using the Qiagen

Allprep kit. Using the Infinium HumanMethylation

450 BeadChip kit, DNA was subjected to bisulphite
http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-14-0454

q 2015 The authors
Printed in Great Britain
conversion, amplification, fragmentation, hybridisation,

extension and labelling, according to the manufacturer’s

instructions (Illumina, Little Chesterford, Essex, UK). Bead

summary data from Infinium HumanMethylation450

arrays were processed using the Minfi package in the R

statistical software (Aryee et al. 2014, R-Core-Team 2014).

As previously described, probe types were normalised

separately (Marabita et al. 2013) before generating M- and

B-values for exploratory analysis. Summary plots were

generated in the R statistical software (R-Core-Team 2014).

Raw and processed data have been uploaded to the

ArrayExpress portal under accession E-MTAB-2964, in

addition all code used to generate figures in the paper

are included as part of the R-markdown HTML document

available on our group webpage.
Targeted bisulphite sequencing

PCR primers were designed to amplify a 441 bp fragment

from the HES5 promoter containing 60 CpGs (HES5-

BSx-F: 5 0-GAGGGGGTGTTAGGTTGGTT-3 0; HES5-BSx-R:
Published by Bioscientifica Ltd.
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5 0-ACCCACCTACTCCTTAAAAAAC-3 0). The amplicons

were generated separately for 39 matched tumour normal

sample pairs and assessed before preparing barcoded

sequencing libraries using a Nextera XT kit (Illumina).

Barcoded DNAs were quantified and equal amounts of

each indexed library were then pooled and sequenced on

an Illumina MiSeq (PE300). Fastq data files were split using

index sequences and downstream methylation analysis

was performed using Bismark (Krueger & Andrews 2011)

and summary plots and test statistics were generated using

the R statistical software (R-Core-Team 2014). This analysis

gave a median sequencing coverage of 786! (Supple-

mentary Figure 3, see section on supplementary data

given at the end of this article). All code used to generate

figures in the paper are included as part of the R-markdown

HTML document available on our group webpage.
Data mining

An R markdown document containing all code required

to reproduce our analysis and all figures has been included

as a supplementary HTML document (available on our

group webpage). Briefly, DNA methylation 450k array data

for LNCaP prostate cancer cells and PrEC benign prostate

epithelial cells (CC-2555, Lonza, Basel, Switzerland) were

obtained from GEO (triplicate data for each cell line from

GSE34340 and singleton data for each cell line from

GSE40699) (Statham et al. 2012, Varley et al. 2013) and

summary plots were generated using the R statistical

software (R-Core-Team 2014). Gene expression data from

LNCaP cells treated with the demethylating agent 5-aza-

2 0-deoxycytidine were retrieved from GEO (GSE25346).

Gene expression data from human prostate benign and

tumour tissues were obtained from GEO (GSE3325). Gene

expression data from control and ERG-knockdown VCaP

cells was retrieved from GEO (GSE60771). All GEO data

were retrieved using the GEOquery package in the

R statistical software and summary plots were generated

using the same software (Davis & Meltzer 2007, R-Cor-

e-Team 2014). Transcriptional networks were drawn using

the BioTapestry application (Longabaugh 2012) construct-

ing models using ChIP-seq binding profiles, expression

correlations and published transcriptional links.
HES5 motif enrichment analysis

The position weight matrix for HES5 was obtained from Yan

et al. (2013) and used to search the genomic sequence of the

HES6 gene locus (including 1 kb upstream and 1 kb down-

stream sequence). Motif searches were carried out using the
http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-14-0454
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RSAT matrix-scan (with human ‘upstream-noorf’ back-

ground control) (Turatsinze et al. 2008), and motif scores

were visualised using BioSAVE (Pollock & Adryan 2008).
Androgen time-course gene expression profiling in

LNCaP and VCaP cells

Following 72-h steroid depletion in the media containing

10% charcoal-stripped FBS, LNCaP and VCaP cells were

subjected to androgen stimulation (1 nM R1881) or

vehicle control treatment (0.01% ethanol). The cells

were harvested at the indicated timepoints over a 24 h

period following treatment and RNA extracted using

Trizol (Life Technologies). For the LNCaP treatment

time-course, a full analysis has been published (Massie

et al. 2011) and raw and normalised data have been

deposited at GEO (GSE18684). Data for the VCaP

androgen treatment time-course have also been deposited

at ArrayExpress (E-MTAB-2968). Expression data were

analysed using the beadarray software, with spatial

artefacts identified and removed automatically (BASH)

and curated manually (Dunning et al. 2007, Cairns et al.

2008). The resulting data set was summarised with outliers

removed to obtain mean log-intensity and standard error

for each probe/array combination.
Results

HES5 promoter methylation is an early event in

prostate tumourigenesis

In order to investigate the epigenetic landscape within

and between prostate tumours, we systematically dis-

sected four radical prostatectomy specimens, harvesting

17 tumour-rich samples from 13 spatially separated

tumour cores (median 46% tumour, IQR 36–62%), four

adjacent benign samples and three whole-blood samples

(Fig. 1a and Supplementary Figure 1a). Consistent with

previous reports (Lindberg et al. 2013), these spatially

separated tumour cores appeared to be only distantly

related by somatic mutations and therefore our aim was

to identify early (common ‘trunk’) epigenetic events.

Analysis of the methylation distributions for all assayed

CpGs revealed that global methylation profiles were

similar between tumour and benign prostate samples

(Spearman’s rank correlation of tumour vs benign methy-

lation profiles 0.94–1.00; Supplementary Figure 1b,c, d

and e). A recent study has highlighted eight genomic

loci that showed differential methylation in a series of

unmatched tumour and benign prostate samples (i.e. from
Published by Bioscientifica Ltd.
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different individuals), a subset of which were proposed as

molecular markers to support pathological diagnosis of

biopsies (Paziewska et al. 2014). We assessed the repro-

ducibility and clonality of these eight differentially

methylated regions in our cohort of cases with multiple

spatially separate tumour samples, matched benign tissue

and blood DNA samples (Fig. 1b and Supplementary

Figure 1f, g, h, i, j, k, l, m).

In our cohort, the promoter region of the HES5

gene showed the largest and most consistent increase in

methylation in tumour samples compared with matched

normal tissue (median 7.6-fold increase, median varianceZ

0.003), together with consistently low methylation in

adjacent normal tissue (median normal methylationZ

0.08, median varianceZ0.0006; Fig. 1b, c, d and Supple-

mentary Figure 1f, g, h, i, j, k, l, m). The study by Paziewska

et al. (2014) showed low HES5 promoter methylation

in benign prostatic hyperplasia and hypermethylation

in prostate tumour biopsies. Among the other regions

examined, we found that tumour methylation at the

ITGB2 and mir10B loci showed no difference with

matched benign tissue, the APC locus showed variable

differences between tumour and matched benign and the

remaining four loci (RARB, C5orf4 (FAXDC2), TACC2

and DGKZ) showed increased methylation in tumour vs
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Figure 2

Validation of HES5 promoter methylation as a common event in two

additional independent prostate cancer cohorts. (A) CpG methylation

summary of the HES5 promoter as determined by bisulphite sequencing

from a representative tumour–normal pair. Each column represents one

CpG assayed (nZ60), red and blue stacked bars represent the proportion of

methylated and unmethylated reads, respectively, at each CpG. Column

widths are proportional to sequencing coverage (medianZ786!).

(B) Scatter plot summary of HES5 promoter methylation for 39 tumour–

normal pairs. (C) Histogram summary of significance testing for increased

HES5 promoter methylation in tumour vs normal sample pairs (nZ39 pairs
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matched benign samples, although to a lesser extent

than the HES5 locus (Fig. 1b, c, d and Supplementary

Figure 1f, g, h, i, j, k, l, m). The tumour-specific

methylation changes at the HES5 promoter were con-

sistent within and between cases and comparable with

the hypermethylation observed at the GSTP1 gene (Fig. 1d

and e), which is invariably silenced in prostate cancer

and has been extensively studied (Lee et al. 1994). These

consistent methylation changes at the HES5 promoter

appear to be locus specific, as highlighted by the similarity

of global methylation profiles (Supplementary Figure 1b,

c, d and e) and the absence of consistent changes in

DNA methylation at other genomic loci across spatially

separated tumour samples from the same patient (Supple-

mentary Figure 2, see section on supplementary data given

at the end of this article).

Therefore using our cohort of cases with multiple

tumour foci and matched benign samples, we found that

hypermethylation at the HES5 promoter region was

observed across tumour samples from all patients and in

all spatially separated tumour foci from the same patient.

The homogenous hypermethylation of the HES5 promoter

across genetically heterogeneous tumour cores is con-

sistent with this being an early event in tumourigenesis

(Fig. 1c and Supplementary Figure 1m).
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HES5 promoter methylation is a recurrent event

in prostate tumours

To assess the frequency of HES5 hypermethylation in

prostate cancer, we performed targeted bisulphite

sequencing of the HES5 promoter in a separate cohort
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of 39 matched tumour and adjacent benign samples. This

analysis included 60 CpGs in the HES5 promoter and gave

a median sequencing coverage of 786! (Supplementary

Figure 3). This analysis provided a comprehensive view of

DNA methylation across the HES5 gene promoter, in
dC +Aza−dC
24 h

+Aza−dC
48 h

−2

−1

0

1

2

HES6 expression

LN
C

aP
 e

xp
re

ss
io

n
lo

g 2 
(a

za
−

dC
/D

M
S

O
)

C

Benign Primary tumour

−2.5

−1.0

0.0

HES5  expression
(Varambally et al. 2005)

H
E

S
5 

23
92

30
_a

t l
og

2
(e

xp
re

ss
io

n/
be

ni
gn

)

Benign Primary tumour

−1.0

0.0

1.0

HES6  expression
(Varambally et al. 2005)

H
E

S
6 

22
64

46
_a

t l
og

2
(e

xp
re

ss
io

n/
be

ni
gn

)

D

E

I

G

7

8

9

6.4 6.8 7.2 7.6

H
E

S
6

IL
M

N
_1

69
42

68

ILMN_1727426
ERG

7

8

9

7.0 7.5 8.0 8.5 9.0 9.5

H
E

S
6

IL
M

N
_1

69
42

68

ILMN_1710284
HES1

0.95 1.05 1.15

−0.4

0.0

0.2

0.4

Average HES1 and HES6

H
E

S
1 

−
 H

E
S

6 

−0.2

0.95 1.05 1.15

−0.4

0.0

0.2

0.4

Average ERG and HES6

E
R

G
 −

 H
E

S
6 

−0.2

HES1
HES5

ERG

Tumour+ERG

HES6

AR PSA TMPRSS2-ERG

HES1

ARGs/AURKA/PLK1/PLK1

Published by Bioscientifica Ltd.

http://erc.endocrinology-journals.org/cgi/content/full/ERC-14-0454/DC1
http://erc.endocrinology-journals.org/cgi/content/full/ERC-14-0454/DC1
http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-14-0454


E
n

d
o

cr
in

e
-R

e
la

te
d

C
a
n

ce
r

Research C E Massie et al. HES5 silenced early in prostate
tumourigenesis

22 :2 137
contrast to the four CpGs assessed using methylation

arrays and a narrow genomic window in a previous

study (Paziewska et al. 2014). Benign samples showed

hypomethylation across the entire HES5 promoter,

whereas matched tumour samples had consistent

hypermethylation across all 60 CpGs assayed (Fig. 2a, b

and Supplementary Figure 4, see section on supple-

mentary data given at the end of this article). This

pattern of hypomethylation in benign tissue and hyper-

methylation in tumours was consistent in 38/39 matched

tumour normal pairs (97% at P!0.05, Wilcox test;

Fig. 2c). In the single discordant sample pair, there was

increased methylation in the matched benign sample

that was maintained in the tumour (median methylation

20.7 and 15.4 respectively; Supplementary Figure 4),

consistent with either a pre-transformation change in

this single case or tumour contamination of this normal

tissue core.

We also assessed HES5 methylation in an additional

prostate cancer patient cohort using publicly available

methylation array data (nZ304 tumours, nZ49 matched

normal samples) (Weinstein et al. 2013). In this second

validation cohort, we again observed hypermethylation

in tumours and hypomethylation in benign samples

(42/49 pairs, 86% at P!0.05, Wilcox test; Fig. 2d and e).

Receiver operating characteristic (ROC) curve analysis

for these two geographically distinct validation cohorts

run on different platforms revealed high sensitivity and

specificity (positive predictive value (PPV)Z0.92, area

under the curve (AUC)O0.9, Fig. 2f). These results clearly

demonstrate that in addition to being an early event in

prostate tumourigenesis HES5 methylation is a highly

recurrent event in prostate cancer, suggesting potential as

a specific disease marker and an early acquired (or selected)

event in prostate tumourigenesis.
Figure 3

HES5 expression is repressed by methylation in prostate tumour cells and

shows an inverse trend with HES6 expression. (A) Boxplot showing

methylation status of the HES5 promoter region in LNCaP prostate cancer

cells and PrEC benign prostate cells (triplicates from GSE34340 and

singletons from GSE40699). (B and C) Expression of (B) HES5 and (C) HES6 in

LNCaP prostate cancer cells treated with the demethylating agent 5-aza-

2 0-deoxycytidine (Aza-dC) for 24 and 48 h (GSE25346). Expression presented

as log2 ratios over control untreated cells. (D and E) Boxplot showing the

expression of (D) HES5 and its known target (E) HES6 in a separate cohort of

prostatic benign and primary tumour tissue (GSE3325). Boxplots depict

quartiles, error bars denote 95% CI and data points are shown for values

outside 95% CIs. (F, G, H and I) Scatter plots of gene expression from clinical

prostate tumours showing the relationship between (F) HES5 and HES6,

(G) HES6 and ERG, (H) HES1 and ERG, (I) HES1 and HES6 (including samples

from the cohort shown in Fig. 2b and c). Plots on the left show pairwise
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HES5 is silenced in prostate cancer cells and

demethylation restores expression

Consistent with observations in human tumours, we

found that LNCaP prostate cancer cells exhibit hyper-

methylation of the HES5 promoter, in contrast to HES5

hypomethylation in benign epithelial cells PrEC (Fig. 3a).

The expression of HES5 is low or undetectable in cultured

prostate cancer cell lines and is also low in human

prostate tumours (Supplementary Figure 5a, c, see section

on supplementary data given at the end of this article

and Fig. 3d, f), consistent with epigenetic silencing of

HES5 in prostate cancer (Supplementary Figure 5g and h).

Treatment of LNCaP cells with the DNA demethylating

agent 5-aza-2 0-deoxycytidine caused de-repression of the

HES5 gene (Fig. 3b), consistent with active epigenetic

silencing of the HES5 gene in prostate cancer cells.
HES5 epigenetic silencing is associated with

HES6 expression

HES5 is known to play a role similar to that of HES1 in

developmental processes (Hatakeyama et al. 2004, 2006,

Tateya et al. 2011), and both are involved in negative

feedback loops with HES6 (Fior & Henrique 2005, Jacobsen

et al. 2008), which antagonises the activity of HES1 and

HES5 (Bae et al. 2000, Salama-Cohen et al. 2005). Of note,

HES6 has been recently reported to play an important

functional role in prostate cancer enhancing oncogenic

signalling through the AR (Ramos-Montoya et al. 2014).

Although a rare HES6 gene fusion has been reported

(Annala et al. 2014), no molecular mechanism has been

found for the frequent up-regulation of HES6 in prostate

cancer. In prostate cancer cells, de-repression of HES5 with

the demethylating agent 5-aza-2 0-deoxycytidine resulted
relationships between gene expression, dashed quadrant lines indicates

the mid-point of expression values for each gene. Plots on the right show

the relationship between the level and difference in expression for each

pair of genes (using median centred values for each gene). Divergence

from the dashed zero line indicates an inverse relationship, red trend lines

depict loess regression. (J) Simple models of the putative expression

networks in benign prostate, prostate cancer and ERG-positive prostate

cancer involving the AR, HES5, HES6, ERG and HES1. Genes are depicted by

thick horizontal lines, connecting lines depict transcriptional targets of

each encoded transcription factor. Connectors with arrowheads depict

positively regulated targets, while connectors with flat ends depict

repressed targets. Genes shown in grey depict low/no expression in a given

condition. On the HES5 gene open circles depict hypomethylation and

filled circles depict hypermethylation. ARGs denotes AR-regulated genes.

Model drawn using BioTapestry.
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in a delayed downregulation of HES6 (Fig. 3c), consistent

with HES5 repression of HES6. We also observed an inverse

relationship between HES5 and HES6 expression in a series

of primary tumours compared with benign prostate
A
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samples, where HES5 expression decreased and HES6

expression increased in tumour vs benign prostate samples

(Fig. 3d and e). In our cohort of multiple spatially

separated tumour samples, we found that HES5 expression
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was decreased in tumour cores compared with matched

benign tissue and that HES6 was also increased in some

of those tumour cores, consistent with HES5 silencing in

tumourigenesis and additional mechanisms regulating

HES6 expression (Supplementary Figure 5e and f).

However, we found no evidence of a correlation between

HES5 methylation and expression in a larger series of

tumours (nZ39), nor between HES5 and HES6 expression

in this tumour cohort (Fig. 3f). This lack of correlation may

at least in part be explained by the low or absent

expression of HES5 in prostate tumour samples (Figs 2

and 3d, f) confounding such correlative analysis. Indeed,

we found that HES5 expression appeared to be low and

showed little variation in this series of 39 prostate tumours

(Fig. 3f). The few samples that had slightly higher HES5

expression also had low HES6 expression (Fig. 3f), which

although not compelling alone is consistent with our

other data supporting an inverse relationship between

HES5 and HES6 in addition to highlighting the recurrent

silencing of HES5 in tumourigenesis. There are no

successful HES5 genomic binding data nor chromatin

immunoprecipitation grade antibodies for HES5; there-

fore; we could not assess direct binding of HES5 at

the HES6 gene locus (Yan et al. 2013). However, the

preferred consensus DNA-binding sequence of HES5 has

been determined experimentally (Yan et al. 2013) and

we found strong HES5 consensus sites in and around

the HES6 gene (Supplementary Figure 5i, j and k). Taken

together our observations of i) the inverse correla-

tion between HES5 and HES6 in cancer cells treated with

5-aza-2 0-deoxycytidine, ii) their inverse correlation in

tumour-normal comparisons and iii) strong consensus

HES5 binding sites at the HES6 gene locus suggests

that HES5 may repress HES6 in prostate epithelial cells.

The ubiquitous HES5 silencing in tumours cells may
Figure 4

Detailed gene expression time-course analysis, genomic binding profiles

and ERG knockdown supports an AR–ERG–HES1–HES6 transcriptional

cascade. (A, B and C) Gene expression profiles from androgen stimulation

and vehicle control time-course experiments using VCaP (ERG-positive) and

LNCaP (ERG-negative) prostate cancer cells. Panels on the left show the

mean centered transcript profiles (as log2 ratios/average) and panels

on the right show bar plots of the expression levels (log2 intensity) for

(A) TMPRSS2, (B) HES1 and (C) HES6. Error bars depict CI for each time-point

measured. Vertical dashed lines correspond to the ‘change-points’ for gene

expression in the VCaP (dark red) and LNCaP (dark blue) time-series. (D and

E) Bar plots showing the androgen-induced expression ‘change-points’ for

each gene from (D) LNCaP and (E) VCaP androgen treatment time-series

(values correspond to the dashed lines in panels A, B and C). (F and G)

http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-14-0454

q 2015 The authors
Printed in Great Britain
therefore potentiate (or de-repress) HES6 expression in

prostate tumours.
ERG and HES6 expression show an inverse relationship

Despite the early and frequent silencing of HES5 in

prostate cancer, we observed variable expression of the

HES5 transcriptional target HES6 in prostate tumour

samples (Fior & Henrique 2005) (Fig. 3f and Supple-

mentary Figure 5f), prompting us to investigate other

factors that may regulate HES6 expression in prostate

tumour cells. We found that variations in HES6 expression

showed an inverse relationship with expression of the

frequently rearranged ERG gene in prostate tumours,

highlighted by an inverse correlation (rZK0.28) and

mutual exclusivity of HES6 and ERG expression (i.e. no

samples have both high ERG and HES6 expression, Fig. 3g

left panel). This inverse relationship is illustrated clearly

by the increasing difference between ERG and HES6 at

higher levels of expression (i.e. divergence from zero with

increasing expression, Fig. 3g right panel).
ERG and HES1 expression show a positive correlation

In contrast the other major HES6 antagonist HES1 (Bae

et al. 2000, Hatakeyama et al. 2004, 2006, Jacobsen et al.

2008) showed a strong positive correlation with ERG

expression (rZ0.65; Fig. 3h), suggesting an ERG–HES1–

HES6 transcriptional network in ERG-fusion positive

prostate cancer cells (Fig. 3g, h and i). In support of this

prediction, we found evidence for extensive ERG binding

at the HES1 gene locus (Fig. 4f) and also confirmed the

previously reported AR binding sites upstream of the HES6

gene (Ramos-Montoya et al. 2014) by using multiple data

sets (Fig. 4g).
Genomic binding profiles for ERG, ETV1 and the AR in prostate cells

at the (F) HES1 and (G) HES6 gene loci. Genomic binding sites for each

transcription factor are depicted by coloured horizontal rectangles.

Multiple datasets are included for AR-binding profiles using the labelling

scheme ‘factor-sample, study’ (i.e. ‘AR-VCaP, Wei et al. (2010)’ represents

the binding profile of the AR in VCaP cells from the study of Wei et al.

(2010)). A scale bar is shown at the top together with chromosomal

locations and gene locations and orientations are indicated at the bottom

of each plot. (H and I) Boxplots showing the expression of (H) ERG and (I)

HES1 in VCaP cells under control or ERG knockdown conditions (GSE60771).

Significance testing was performed using t-tests, P values annotated on

each plot.
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A transcriptional network involving HES5, AR, ERG

and HES6

Combining our observations of HES5 silencing in prostate

cancer with expression correlations in prostate tissue,

DNA binding profiles for ERG and the AR and published

transcriptional links (i.e. between HES5 and HES6 (Fior &

Henrique 2005), HES1 and HES6 (Jacobsen et al. 2008),

reciprocal HES6 and HES1/5 negative-feedback (Bae et al.

2000, Salama-Cohen et al. 2005, Hatakeyama et al. 2006)

and AR and HES6 (Ramos-Montoya et al. 2014)), we

constructed models of putative gene expression networks

in benign prostate, prostate cancer and prostate cancer

harboring ERG-rearrangements (Fig. 3j). In this model, we

predict that i) HES5 expression in benign epithelial cells

contributes to HES6 repression and ii) HES5 promoter

methylation and silencing in prostate tumours potentiates

AR activation of HES6 to start an oncogenic feed-forward

transcriptional signalling network (Fig. 3j). Finally, our

model suggests that in tumour cells harbouring an ERG

gene fusion iii) AR activation of the ERG fusion gene

creates a dynamic negative feedback loop impacting

on both the AR and HES6, creating a more complex

transcriptional network (Fig. 3j). Negative feedback loops

are common motifs in biological networks and have

been shown to increase robustness and speed-up response

times of transcriptional circuits (Rosenfeld et al. 2002,

Shen-Orr et al. 2002, Austin et al. 2006, Nevozhay et al.

2009). Therefore, our model may highlight a previously

unknown signalling node in ERG-positive tumours that

may increase the robustness and response-rates of key

pathways in prostate cancer.
ERG-fusion status affects HES1 and HES6 regulation

by the AR

We tested the putative AR–HES6 and AR–ERG–HES1–HES6

transcriptional networks in AR-positive prostate cancer

cells with and without TMPRSS2–ERG gene fusions (VCaP

and LNCaP, respectively; Fig. 4). Using an androgen

stimulation time-course, we were able to both track

changes in gene expression and map their dynamics in

prostate cancer cells with and without AR-regulated ERG-

fusion expression following AR stimulation (Tomlins et al.

2005, Massie et al. 2011). We observed early up-regulation

of the known AR-target gene TMPRSS2 in both ERG-fusion

positive and ERG-fusion negative cells in response to

androgen stimulation (Fig. 4a), while ERG induction

only occurred in TMPRSS2–ERG fusion positive cells

(Supplementary Figure 7a, see section on supplementary
http://erc.endocrinology-journals.org
DOI: 10.1530/ERC-14-0454
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data given at the end of this article). Consistent with its

epigenetic silencing, we found low expression and no

change in HES5 expression in either cell type (Supple-

mentary Figure 7b). HES1 expression was not significantly

changed in ERG-fusion negative cells, but showed strong

androgen induction in ERG-fusion positive cells (Fig. 4b).

HES6 expression was increased in ERG-fusion negative cells

but was downregulated in ERG-fusion positive cells

(Fig. 4c). Defining the timing of gene expression changes

(‘change-points’) for these genes in ERG-fusion positive

cells shows the sequence of events: i) TMPRSS2–ERG

upregulation; ii) HES1 upregulation; iii) HES6 downregula-

tion (Fig. 4e). These data show that HES1 is only induced

by androgen signalling in ERG-fusion positive cells and

that induction precedes HES6 repression. This transcrip-

tional data are supported by genome-wide binding profiles

showing that the AR is recruited to the HES6 gene locus

(Fig. 4g) but not to the HES1 gene locus in ERG-fusion

negative cells (Fig. 4f). However, in ERG-fusion positive

cells, ERG binding is widespread at the HES1 locus (Fig. 4f),

consistent with direct ERG regulation of the HES1 gene.
HES1 expression is dependent on ERG

To test this further, we looked at the expression of HES1

following ERG knockdown in VCaP cells (Mounir et al.

2014) (Fig. 4h and Supplementary Figure 6b, c, see section

on supplementary data given at the end of this article)

and found that HES1 expression was dependent on the

expression of ERG (Fig. 4i and Supplementary Figure 6d, e),

further supporting our model. In addition to the timing of

expression changes in response to androgen stimulation,

these data support an AR–ERG–HES1–HES6 transcriptional

network in ERG-fusion positive prostate cancer cells.

While in ERG-fusion negative cells, a simpler AR–HES6

network seems to occur. In each case, these transcriptional

networks may have been preceded (and potentiated) by

HES5 epigenetic silencing in early tumourigenesis.
Discussion

Our data are consistent with an early role in prostate

tumourigenesis for promoter-wide hypermethylation of

HES5, supported by the very high frequency of this

epigenetic change and our observation that this was a

common alteration in a series of multi-focal tumours.

While the functional role of HES5 methylation in prostate

tumourigenesis is yet to be determined, we found that

demethylation resulted in downregulation of the HES5-

target gene HES6, which has recently been shown to drive
Published by Bioscientifica Ltd.
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progression in prostate cancer via the androgen receptor

(Ramos-Montoya et al. 2014). Therefore, we speculate

that one potential effector mechanism of HES5 silencing

could be de-repression of HES6 that in turn enhances

AR regulation of key oncogenic targets, contributing to

transformation and/or priming cells for subsequent acqui-

sition of aggressive phenotypes. In addition, HES5 has

established roles in tissue patterning during development

(Hatakeyama et al. 2004, Tateya et al. 2011), with HES5-null

cells promoting an imbalance in intestinal and neural stem

cell fate choices resulting from defective NOTCH signal-

ling (Sancho et al. 2013). Intriguingly defective NOTCH

signalling has recently been shown to drive clonal

expansions of P53 mutant cells (Alcolea et al. 2014), raising

the possibility that HES5 silencing early in prostate

tumourogenesis might drive clonal expansions and

contribute to the ‘field effect’ observed in prostate tumours

(Bostwick et al. 1998, Hanson et al. 2006, Mehrotra et al.

2008). However, these and other downstream consequ-

ences of the early and common epigenetic silencing of

HES5 will require careful dissection in future studies.

It is intriguing that this HES5–HES6/AR–HES6 tran-

scriptional network is affected by TMPRSS2–ERG gene

fusion status. While the functional consequences of this

remain to be explored, the implication of both AR and

ERG oncogenenic signalling axes provides further weight

for the importance of the HES transcriptional network

in prostate cancer. Future studies will need to include

overexpression of HES5 in prostate cancer cells to establish

the direct consequences on HES6 and AR signalling, as

well as the phenotypic consequences of bypassing HES5

silencing. In addition, depletion of HES5 in 5-aza-

2 0-deoxycytidine-treated prostate cancer cells (both ERG-

positive and ERG-negative) will allow an assessment of

de-repression of the endogenous HES5 locus on gene

expression and cellular phenotypes. Finally, future studies

should also address the mechanisms upstream of HES5

silencing, the high frequency of which would be consis-

tent with either a strong-selective pressure or a targeted

silencing of HES5, for example via loss of GCM as

described in neural stem cells (Hitoshi et al. 2011).

This report highlights HES5 silencing as an early and

frequent event in prostate tumourigenesis that may serve

as a useful biomarker or as a starting point for preventive

medicine or targeted intervention strategies.
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