596 research outputs found

    Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3

    Get PDF
    Recent works have shown that the domain walls of room-temperature multiferroic BiFeO3 (BFO) thin films can display distinct and promising functionalities. It is thus important to understand the mechanisms underlying domain formation in these films. High-resolution x-ray diffraction and piezo-force microscopy, combined with first-principles simulations, have allowed us to characterize both the atomic and domain structure of BFO films grown under compressive strain on (001)-SrTiO3, as a function of thickness. We derive a twining model that describes the experimental observations and explains why the 71o domain walls are the ones commonly observed in these films. This understanding provides us with a new degree of freedom to control the structure and, thus, the properties of BiFeO3 thin films.Comment: RevTeX; 4 two-column pages; 4 color figures. Figure 2b does not seem to display well. A proper version can be found in the source fil

    Evaluation of α,β-unsaturated ketones as antileishmanial agents

    Get PDF
    In this study, we assessed the antileishmanial activity of 126 α,β-unsaturated ketones. The compounds NC901, NC884, and NC2459 showed high leishmanicidal activity for both the extracellular (50% effective concentration [EC(50)], 456 nM, 1,122 nM, and 20 nM, respectively) and intracellular (EC(50), 1,870 nM, 937 nM, and 625 nM, respectively) forms of Leishmania major propagated in macrophages, with little or no toxicity to mammalian cells. Bioluminescent imaging of parasite replication showed that all three compounds reduced the parasite burden in the murine model, with no apparent toxicity

    Universal Finite Size Scaling Functions in the 3D Ising Spin Glass

    Full text link
    We study the three-dimensional Edwards-Anderson model with binary interactions by Monte Carlo simulations. Direct evidence of finite-size scaling is provided, and the universal finite-size scaling functions are determined. Monte Carlo data are extrapolated to infinite volume with an iterative procedure up to correlation lengths xi \approx 140. The infinite volume data are consistent with a conventional power law singularity at finite temperature Tc. Taking into account corrections to scaling, we find Tc = 1.156 +/- 0.015, nu = 1.8 +/- 0.2 and eta = -0.26 +/- 0.04. The data are also consistent with an exponential singularity at finite Tc, but not with an exponential singularity at zero temperature.Comment: 4 pages, Revtex, 4 postscript figures include

    The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority

    Full text link
    We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field. A traditional analysis shows no signs of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour of the model: Averages over all the data only describe the behaviour of a small fraction of it. Therefore we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variate. We propose a finite-size scaling analysis based on the probability distribution function of the conditioning variate, which may accelerate the convergence to the thermodynamic limit. In this way, we find a non-trivial spectrum of behaviours, where a part of the measurements behaves as the average, while the majority of them shows signs of scale invariance. As a result, we can estimate the temperature interval where the phase transition in a field ought to lie, if it exists. Although this would-be critical regime is unreachable with present resources, the numerical challenge is finally well posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results unchanged
    • …
    corecore