We study the three-dimensional Edwards-Anderson model with binary
interactions by Monte Carlo simulations. Direct evidence of finite-size scaling
is provided, and the universal finite-size scaling functions are determined.
Monte Carlo data are extrapolated to infinite volume with an iterative
procedure up to correlation lengths xi \approx 140. The infinite volume data
are consistent with a conventional power law singularity at finite temperature
Tc. Taking into account corrections to scaling, we find Tc = 1.156 +/- 0.015,
nu = 1.8 +/- 0.2 and eta = -0.26 +/- 0.04. The data are also consistent with an
exponential singularity at finite Tc, but not with an exponential singularity
at zero temperature.Comment: 4 pages, Revtex, 4 postscript figures include