Abstract

We study the three-dimensional Edwards-Anderson model with binary interactions by Monte Carlo simulations. Direct evidence of finite-size scaling is provided, and the universal finite-size scaling functions are determined. Monte Carlo data are extrapolated to infinite volume with an iterative procedure up to correlation lengths xi \approx 140. The infinite volume data are consistent with a conventional power law singularity at finite temperature Tc. Taking into account corrections to scaling, we find Tc = 1.156 +/- 0.015, nu = 1.8 +/- 0.2 and eta = -0.26 +/- 0.04. The data are also consistent with an exponential singularity at finite Tc, but not with an exponential singularity at zero temperature.Comment: 4 pages, Revtex, 4 postscript figures include

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019