31 research outputs found
Interferon-beta-related tumefactive brain lesion in a Caucasian patient with neuromyelitis optica and clinical stabilization with tocilizumab
Background: Neuromyelitis optica (NMO) is a severely disabling inflammatory disorder of the central nervous system and is often misdiagnosed as multiple sclerosis (MS). There is increasing evidence that treatment options shown to be beneficial in MS, including interferon-β (IFN-β), are detrimental in NMO. Case presentation: We here report the first Caucasian patient with aquaporin 4 (AQP4) antibody (NMO-IgG)-seropositive NMO presenting with a tumefactive brain lesion on treatment with IFN-β. Disease started with relapsing optic neuritis and an episode of longitudinally extensive transverse myelitis (LETM) in the absence of any brain MRI lesions or cerebrospinal fluid-restricted oligoclonal bands. After initial misdiagnosis of multiple sclerosis (MS) the patient received subcutaneous IFN-β1b and, subsequently, subcutaneous IFN-β1a therapy for several years. Under this treatment, the patient showed persisting relapse activity and finally presented with a severe episode of subacute aphasia and right-sided hemiparesis due to a large T2 hyperintensive tumefactive lesion of the left brain hemisphere and a smaller T2 lesion on the right side. Despite rituximab therapy two further LETM episodes occurred, resulting in severe neurological deficits. Therapeutic blockade of the interleukin (IL)-6 signalling pathway by tocilizumab was initiated, followed by clinical and radiological stabilization. Conclusion: Our case (i) illustrates the relevance of correctly distinguishing NMO and MS since these disorders differ markedly in their responsiveness to immunomodulatory and -suppressive therapies; (ii) confirms and extends a previous report describing the development of tumefactive brain lesions under IFN-β therapy in two Asian NMO patients; and (iii) suggests tocilizumab as a promising therapeutic alternative in highly active NMO disease courses
Monitoring retinal changes with optical coherence tomography predicts neuronal loss in experimental autoimmune encephalomyelitis.
BACKGROUND:Retinal optical coherence tomography (OCT) is a clinical and research tool in multiple sclerosis, where it has shown significant retinal nerve fiber (RNFL) and ganglion cell (RGC) layer thinning, while postmortem studies have reported RGC loss. Although retinal pathology in experimental autoimmune encephalomyelitis (EAE) has been described, comparative OCT studies among EAE models are scarce. Furthermore, the best practices for the implementation of OCT in the EAE lab, especially with afoveate animals like rodents, remain undefined. We aimed to describe the dynamics of retinal injury in different mouse EAE models and outline the optimal experimental conditions, scan protocols, and analysis methods, comparing these to histology to confirm the pathological underpinnings. METHODS:Using spectral-domain OCT, we analyzed the test-retest and the inter-rater reliability of volume, peripapillary, and combined horizontal and vertical line scans. We then monitored the thickness of the retinal layers in different EAE models: in wild-type (WT) C57Bl/6J mice immunized with myelin oligodendrocyte glycoprotein peptide (MOG35-55) or with bovine myelin basic protein (MBP), in TCR2D2 mice immunized with MOG35-55, and in SJL/J mice immunized with myelin proteolipid lipoprotein (PLP139-151). Strain-matched control mice were sham-immunized. RGC density was counted on retinal flatmounts at the end of each experiment. RESULTS:Volume scans centered on the optic disc showed the best reliability. Retinal changes during EAE were localized in the inner retinal layers (IRLs, the combination of the RNFL and the ganglion cell plus the inner plexiform layers). In WT, MOG35-55 EAE, progressive thinning of IRL started rapidly after EAE onset, with 1/3 of total loss occurring during the initial 2 months. IRL thinning was associated with the degree of RGC loss and the severity of EAE. Sham-immunized SJL/J mice showed progressive IRL atrophy, which was accentuated in PLP-immunized mice. MOG35-55-immunized TCR2D2 mice showed severe EAE and retinal thinning. MBP immunization led to very mild disease without significant retinopathy. CONCLUSIONS:Retinal neuroaxonal damage develops quickly during EAE. Changes in retinal thickness mirror neuronal loss and clinical severity. Monitoring of the IRL thickness after immunization against MOG35-55 in C57Bl/6J mice seems the most convenient model to study retinal neurodegeneration in EAE
Additional effect of erenumab for patients with chronic migraine treated with onabotulinumtoxin A—real-world data from a preliminary cohort study
BackgroundThis preliminary retrospective cohort study investigates the potential additive prophylactic effect of erenumab, a fully human monoclonal antibody that blocks the calcitonin gene-related peptide receptor, in combination with ongoing onabotulinumtoxin A (onaBoNT-A) treatment in patients suffering from chronic migraine.MethodsThe study included 218 patients and investigated the effects of adding erenumab to the existing treatment regimen. The primary outcome was the MIDAS (Migraine Disability Assessment) score assessed 3 months after the introduction of erenumab.ResultsThe results indicated a significant improvement of the MIDAS score, suggesting a reduction in migraine-related disability following the addition of erenumab to onaBoNT-A. In the inter group comparison, dual therapy showed a significantly greater reduction of the MIDAS when compared to a switch from onaBoNT-A to erenumab monotherapy, but not compared to initiation of onaBoNT-A monotherapy. It is hypothesized that the observed additive effects are due to the independent modes of action of erenumab and onabotulinumtoxin A.ConclusionThis study suggests that the combination of erenumab with onaBoNT-A may offer an improved approach for the treatment of chronic migraine in selected patients. However, the results highlight the need for prospective, controlled studies to validate these findings and determine the optimal combination of treatments tailored to the individual patient
Prevalence and prognostic value of neurological affections in hospitalized patients with moderate to severe COVID-19 based on objective assessments.
Neurological manifestations of coronavirus disease 2019 (COVID-19) have been frequently described. In this prospective study of hospitalized COVID-19 patients without a history of neurological conditions, we aimed to analyze their prevalence and prognostic value based on established, standardized and objective methods. Patients were investigated using a multimodal electrophysiological approach, accompanied by neuropsychological and neurological examinations. Prevalence rates of central (CNS) and peripheral (PNS) nervous system affections were calculated and the relationship between neurological affections and mortality was analyzed using Firth logistic regression models. 184 patients without a history of neurological diseases could be enrolled. High rates of PNS affections were observed (66% of 138 patients receiving electrophysiological PNS examination). CNS affections were less common but still highly prevalent (33% of 139 examined patients). 63% of patients who underwent neuropsychological testing (n = 155) presented cognitive impairment. Logistic regression models revealed pathology in somatosensory evoked potentials as an independent risk factor of mortality (Odds Ratio: 6.10 [1.01-65.13], p = 0.049). We conclude that hospitalized patients with moderate to severe COVID-19 display high rates of PNS and CNS affection, which can be objectively assessed by electrophysiological examination. Electrophysiological assessment may have a prognostic value and could thus be helpful to identify patients at risk for deterioration