608 research outputs found
Multi-band spectroscopy of inhomogeneous Mott-insulator states of ultracold bosons
In this work, we use inelastic scattering of light to study the response of
inhomogeneous Mott-insulator gases to external excitations. The experimental
setup and procedure to probe the atomic Mott states are presented in detail. We
discuss the link between the energy absorbed by the gases and accessible
experimental parameters as well as the linearity of the response to the
scattering of light. We investigate the excitations of the system in multiple
energy bands and a band-mapping technique allows us to identify band and
momentum of the excited atoms. In addition the momentum distribution in the
Mott states which is spread over the entire first Brillouin zone enables us to
reconstruct the dispersion relation in the high energy bands using a single
Bragg excitation with a fixed momentum transfer.Comment: 19 pages, 7 figure
Damping and frequency shift in the oscillations of two colliding Bose-Einstein condensates
We have investigated the center-of-mass oscillations of a Rb87 Bose-Einstein
condensate in an elongated magneto-static trap. We start from a trapped
condensate and we transfer part of the atoms to another trapped level, by
applying a radio-frequency pulse. The new condensate is produced far from its
equilibrium position in the magnetic potential, and periodically collides with
the parent condensate. We discuss how both the damping and the frequency shift
of the oscillations are affected by the mutual interaction between the two
condensates, in a wide range of trapping frequencies. The experimental data are
compared with the prediction of a mean-field model.Comment: 5 RevTex pages, 7 eps figure
Boltzmann equation simulation for a trapped Fermi gas of atoms
The dynamics of an interacting Fermi gas of atoms at sufficiently high
temperatures can be efficiently studied via a numerical simulation of the
Boltzmann equation. In this work we describe in detail the setup we used
recently to study the oscillations of two spin-polarised fermionic clouds in a
trap. We focus here on the evaluation of interparticle interactions. We compare
different ways of choosing the phase space coordinates of a pair of atoms after
a successful collision and demonstrate that the exact microscopic setup has no
influence on the macroscopic outcome
Superradiant light scattering from a moving Bose-Einstein condensate
We investigate the interaction of a moving BEC with a far detuned laser beam.
Superradiant Rayleigh scattering arises from the spontaneous formation of a
matter-wave grating due to the interference of two wavepackets with different
momenta. The system is described by the CARL-BEC model which is a
generalization of the Gross-Pitaevskii model to include the self-consistent
evolution of the scattered field. The experiment gives evidence of a damping of
the matter-wave grating which depends on the initial velocity of the
condensate. We describe this damping in terms of a phase-diffusion decoherence
process, in good agreement with the experimental results
39-K Bose-Einstein condensate with tunable interactions
We produce a Bose-Einstein condensate of 39-K atoms. Condensation of this
species with naturally small and negative scattering length is achieved by a
combination of sympathetic cooling with 87-Rb and direct evaporation,
exploiting the magnetic tuning of both inter- and intra-species interactions at
Feshbach resonances. We explore tunability of the self-interactions by studying
the expansion and the stability of the condensate. We find that a 39-K
condensate is interesting for future experiments requiring a weakly interacting
Bose gas.Comment: 5 page
Counterflow of spontaneous mass currents in trapped spin-orbit coupled Fermi gases
We use the Bogoliubov-de Gennes formalism and study the ground-state phases
of trapped spin-orbit coupled Fermi gases in two dimensions. Our main finding
is that the presence of a symmetric (Rashba type) spin-orbit coupling
spontaneously induces counterflowing mass currents in the vicinity of the trap
edge, i.e. and particles circulate in opposite
directions with equal speed. These currents flow even in noninteracting
systems, but their strength decreases toward the molecular BEC limit, which can
be achieved either by increasing the spin-orbit coupling or the interaction
strength. These currents are also quite robust against the effects of
asymmetric spin-orbit couplings in and directions, gradually reducing
to zero as the spin-orbit coupling becomes one dimensional. We compare our
results with those of chiral p-wave superfluids/superconductors.Comment: 6 pages with 4 figures; to appear in PR
Intense slow beams of bosonic potassium isotopes
We report on an experimental realization of a two-dimensional magneto-optical
trap (2D-MOT) that allows the generation of cold atomic beams of 39K and 41K
bosonic potassium isotopes. The high measured fluxes up to 1.0x10^11 atoms/s
and low atomic velocities around 33 m/s are well suited for a fast and reliable
3D-MOT loading, a basilar feature for new generation experiments on
Bose-Einstein condensation of dilute atomic samples. We also present a simple
multilevel theoretical model for the calculation of the light-induced force
acting on an atom moving in a MOT. The model gives a good agreement between
predicted and measured flux and velocity values for our 2D-MOT.Comment: Updated references, 1 figure added, 10 pages, 9 figure
Expansion of a Fermi gas interacting with a Bose-Einstein condensate
We study the expansion of an atomic Fermi gas interacting attractively with a
Bose-Einstein condensate. We find that the interspecies interaction affects
dramatically both the expansion of the Fermi gas and the spatial distribution
of the cloud in trap. We observe indeed a slower evolution of the
radial-to-axial aspect ratio which reveals the importance of the mutual
attraction between the two samples during the first phase of the expansion. For
large atom numbers, we also observe a bimodal momentum distribution of the
Fermi gas, which reflects directly the distribution of the mixture in trap.
This effect allows us to extract information on the dynamics of the system at
the collapse.Comment: 4 pages, 4 figure
- …
