17 research outputs found

    Holo-BLSD – A holographic tool for self-training and self-evaluation of emergency response skills

    Get PDF
    In case of cardiac arrest, prompt intervention of bystanders can be vital in saving lives. Basic Life Support and Defibrillation (BLSD) is a procedure designed to deliver a proficient emergency first response. Developing skills in BLSD in a large part of the population is a primary educational goal of resuscitation medicine. In this context, novel computer science technologies like Augmented Reality (AR) and Virtual Reality (VR) can alleviate some of the drawbacks of traditional instructor-led courses, especially concerning time and cost constraints. This paper presents Holo-BLSD, an AR system that allows users to learn and train the different operations involved in BLSD and receive an automatic assessment. The system uses a standard manikin which is quotes{augmented} by an interactive virtual environment that reproduces realistic emergency scenarios. The proposed approach has been validated through a user study. Subjective results confirmed the usability of the devised tool and its capability to stimulate learners' attention. Objective results indicated no statistical significance in the differences between the examiners' evaluation of users who underwent traditional and AR training; they also showed a close agreement between expert and automatic assessments, suggesting that Holo-BLSD can be regarded as an effective self-learning method and a reliable self-evaluation tool

    Interplanetary CubeSats system for space weather evaluations and technology demonstration

    Get PDF
    The paper deals with the mission analysis and conceptual design of an interplanetary 6U CubeSats system to be implemented in the L1 Earth-Sun Lagrangian Point mission for solar observation and in-situ space weather measurements. Interplanetary CubeSats could be an interesting alternative to big missions, to fulfill both scientific and technological tasks in deep space, as proved by the growing interest in this kind of application in the scientific community and most of all at NASA. Such systems allow less costly missions, due to their reduced sizes and volumes, and consequently less demanding launches requirements. The CubeSats mission presented in this paper is aimed at supporting measurements of space weather. The mission envisages the deployment of a 6U CubeSats system in the L1 Earth-Sun Lagrangian Point, where solar observations for in situ measurements of space weather to provide additional warning time to Earth can be carried out. The proposed mission is also intended as a technology validation mission, giving the chance to test advanced technologies, such as telecommunications and solar sails, envisaged as propulsion system. Furthermore, traveling outside the Van Allen belts, the 6U CubeSats system gives the opportunity to further investigate the space radiation environment: radiation dosimeters and advanced materials are envisaged to be imple- mented, in order to test their response to the harsh space environment, even in view of future implementation on other spacecrafts (e.g. manned spacecrafts). The main issue related to CubeSats is how to fit big science within a small package - namely power, mass, volume, and data limitations. One of the objectives of the work is therefore to identify and size the required subsystems and equipment, needed to accomplish specific mission objectives, and to investigate the most suitable configuration, in order to be compatible with the typical CubeSats (multi units) standards

    Experimental investigation on the bond strength between sustainable road bio-binders and aggregate substrates

    No full text
    Interest is growing on the application of bio-binders in road pavements. However, currently there is a lack of data concerning the adhesion between bio-binders and aggregates, which is a crucial aspect to ensure adequate performance and durability of bituminous mixtures, especially in the presence of water. In this regard, the present investigation focuses on the evaluation of the binder bond strength (BBS) between bio-binders, characterized by different percentages of a renewable wood bio-oil and different aging levels, and aggregate substrates (limestone and porphyry), in dry and wet conditions. Preliminarily, the binders were subjected to viscosity tests to determine BBS application temperatures. The main results show that the bio-binders studied exhibit a good adhesion with limestone both in dry and wet conditions as well as with porphyry in dry conditions, resulting in cohesive failures. For porphyry substrate, after wet conditioning, a progressive transition from adhesive to cohesive failures is observed as the bio-oil content increases, indicating that the bio-oil might improve the adhesion between bitumen and siliceous aggregates. Based on previous findings on the chemical characteristics of the bio-binders, the contribution of the bio-oil to the adhesion may be attributed to its high content of esters. Overall, the results suggest that the use of bio-binders in road pavements could lead to significant benefits in terms of performance and resistance to moisture damage

    Investigation of unaged and long-term aged bio-based asphalt mixtures containing lignin according to the VECD theory

    No full text
    In the near future, the world of civil and building engineering will be dominated by the advent of bio-materials. Even the road paving sector is involved in the transition towards more sustainable solutions, promoting at the same time environmental benefits and economic savings. Currently, one of the main goals is to ensure that bio-binders offer good performance, at least comparable with that offered by conventional materials. In the last decades, the exponential increase in traffic volumes has led to various types of asphalt pavement distresses, among which fatigue cracking is one of the most common. Within this context, this study presents the characterization of a bio-based asphalt mixture obtained by replacing 30% of bitumen with lignin, which was compared with a reference asphalt mixture containing a plain bitumen characterised by the same penetration grade. Laboratory produced and compacted specimens were subjected to complex modulus and cyclic fatigue tests with the Asphalt Mixture Performance Tester (AMPT). Both unaged and long-term aging conditions were investigated. The tests and the subsequent analyses were based on the simplified viscoelastic continuum damage (S-VECD) approach. Overall, the results showed that the presence of lignin led to a lower aging susceptibility, but also caused a slight reduction in fatigue life due to an increase in the material stiffness. Furthermore, the obtained results confirmed previous findings deriving from the study of the two binders and from the conventional characterization of the same asphalt mixtures as well

    Holo-BLSD: an Augmented Reality self-directed learning and evaluation system for effective Basic Life Support Defibrillation training

    No full text
    Providing an effective cognitive aid to both lay people and healthcare providers in Basic Life Support and Defibrillation (BLSD) procedures is a relevant educational goal in resuscitation. A self-instruction learning simulation program was developed to maximize learning results, helping to enhance motor skills and the retention of cognitive knowledge, reduce instructor intervention and cost. Microsoft HoloLens technology was used, enabling users to interact with high definition holograms. Holo-BLSD was developed as a mixed reality (MR) self-instruction training environment allowing also assessment, using a standard low-cost CPR manikin to deliver tactile information. The manikin was "augmented" by an interactive virtual environment reproducing realistic scenarios. Learners used natural gestures, body movements and spoken commands to perform their tasks, with virtual 3D objects anchored to the manikin and to the environment. We believe such a project is the first in the domain of BLSD
    corecore