2,129 research outputs found

    A novel resource for problem-solving and peer evaluation

    Get PDF
    Have you ever considered in-class opportunities for problem-solving? Critical thinking? Peer evaluation? These active learning activities provide our students with skill development paired with immediate feedback. Our students can build connections with their peers while increasing their confidence in their own abilities. For instructors, however, the idea of incorporating these activities can be daunting. There may be logistical challenges, technology constraints, and in many high-enrollment classes instructors alone cannot provide personalized feedback to all students. To address these challenges, we have created a novel worksheet that facilitates in-class problem-solving and peer-evaluating activities. How does it work? In our first-year chemistry and physics classes, students are presented with a problem and craft their solution directly on the worksheet. Once completed, the worksheets are re-distributed for immediate peer feedback and evaluation. The instructor guides students through the peer evaluation process using a well-designed rubric. Upon completion of the activity, the worksheets are collected and scanned, with student, grader and grade information automatically collected into a spreadsheet. Each student is sent an e-copy of their peer-graded answer with feedback. For students, there is no additional technology for them to learn; this is a “back-to-basics approach that engages learners through pen-to-paper work. The worksheet enables us to provide opportunities for collaboration and student-to-student interactions that are otherwise difficult to facilitate. The simple design of the worksheet allows it to be used for a variety of active learning activities, and it can easily be adapted for use in any course, large or small. In this presentation, we will show examples of how the worksheet enhanced our courses and discuss potential uses

    TDR Citizens Guidebook

    Full text link
    The purpose of this guidebook is to provide information about transferable development rights (TDR) for communities considering adoption of a TDR program. This book defines the basic elements of TDR and explains how these programs can be used to balance the competing goals of land preservation and development. It is designed to prepare communities to get involved with their local planning process and shape TDR programs to best fit their needs

    The Synthesis of Sulfated Carbohydrates Using a Sulfate Protecting Group Strategy

    Get PDF
    Sulfated carbohydrates play key roles in a wide range of biological processes such as blood clotting, viral entry into cells, amyloidogenesis, neurite outgrowth, tumor growth and metastasis. However, their synthesis still remains a considerable challenge. A general approach to the synthesis of sulfated carbohydrates was examined in which sulfate group is incorporated at the beginning of the syntheses as a protected sulfodiester. Towards this end, a series of sulfuryl imidazolium salts (SIS), a new class of sulfating agents, was prepared and examined as reagents for incorporating 2,2,2-trichloroethyl-protected sulfate esters into monosaccharides. The SIS that contained a 1,2-dimethylimidazolium moiety proved to be a superior sulfating agent compared to SIS bearing no alkyl groups or bulkier alkyl groups on the imidazolium ring. Difficult O- and N- sulfations that required prolonged reaction times and a large excess of the SIS bearing a 1-methylimidazolium group were achieved in high yield and in less time when employing less than half the 1,2-dimethylimidazolium derivative. Efforts were then made to apply the sulfate protecting group strategy to the total synthesis of a class of chondroitin sulfate glycosaminoglycans. These studies revealed some of the limitations of the sulfate protecting group approach to the synthesis of sulfated oligosaccharides. Studies on the selective introduction and isomerization of the carbobenzyloxy protecting group into 2,3-diols of 4,6-O-benzylidene galactose derivatives are also reported

    Hypothalamic pituitary adrenal axis dysregulation in obese pregnancy

    Get PDF
    There has been a global rise in obesity in the last three decades, and at present one in five women are obese at antenatal booking. Maternal obesity is associated with an increased risk of adverse pregnancy outcomes, including increased fetal size and prolonged pregnancy. In the longer-term, offspring of obese are at increased risk of premature death from a cardiovascular event in their adulthood. One mechanism that has been linked to these outcomes is fetal exposure to glucocorticoids in utero. During normal pregnancy, the maternal hypothalamic pituitary adrenal (HPA) axis undergoes major changes, resulting in exponentially increasing levels of the major circulating glucocorticoid cortisol, and other HPA axis hormones, such as corticotrophin releasing hormone (CRH). Cortisol and CRH are vital for normal fetal growth and length of gestation, but in excess they are associated with fetal growth restriction and preterm labour. In non-pregnant obesity, it is thought that the HPA axis is dysregulated, although evidence is inconclusive. Little is known about the effects of maternal obesity in pregnancy on the HPA axis. The work in this Thesis used clinical studies to test the hypothesis that the HPA axis is dysregulated in obese pregnant women with altered release, clearance and placental metabolism of cortisol. Associations with clinical outcomes related to fetal size and length of gestation were also studied. The HPA axis activity during pregnancy was investigated in a prospective case-control study cohort. Fasting serum cortisol levels were measured at 16, 28 and 36 weeks of gestation (obese n=276, lean n=135). In a subset (obese n=20, lean n=20), corticosteroid binding globulin (CBG), CRH, estrogens and progesterone were measured. Salivary cortisol was measured in samples collected at bedtime, waking and 30 minutes after waking at 16 weeks. Urinary glucocorticoid metabolites were measured at 19 weeks and 36 weeks (obese n=6, lean n=5) and non-pregnant (obese n=7, lean n=7) subjects. All circulating hormone levels rose similarly in obese and lean during pregnancy, but were significantly lower in obese women. The diurnal rhythm of cortisol was maintained. Urinary glucocorticoids increased with gestation in lean, but not in obese, indicating a lesser activation of the HPA axis in obese compared with lean pregnancy. These findings associated with increased birthweight and longer gestation in obese pregnancy, suggesting that decreased HPA axis activity may underlie these obese related adverse pregnancy outcomes. Whether or not lower glucocorticoids in obese pregnancies are maintained at delivery was investigated by measuring active glucocorticoids (cortisol and corticosterone) and their inactive versions (cortisone and 11- dehydrocorticosterone, respectively) from matched maternal and cord plasma samples (n=259, BMI 18 – 55 kg/m2). Active glucocorticoids were significantly higher in maternal than cord blood, and inactive versions were significantly higher in cord than maternal blood. Increased maternal BMI associated with lower maternal cortisol, corticosterone and 11-dehydrocorticosterone. Despite significant correlations between maternal and cord blood glucocorticoid levels, increased maternal BMI did not associate with lower cord blood glucocorticoids. This suggests that conditions at delivery may overcome any potential negative effects of low maternal glucocorticoids on the fetus in the short-term. However, it may not preclude the longer-term effects of fetal exposure to lower glucocorticoid levels during obese pregnancy, and offspring follow-up studies are required. Potential mechanisms leading to altered HPA axis activity in obese pregnancy were explored by studying the pulsatile release and placental metabolism of glucocorticoid hormones. Glucocorticoid pulsatility is thought to be important for transcriptional regulation of glucocorticoid responsive genes, and disruptions to pulsatility have been reported in some disease processes. Glucocorticoids were measured in 10-minute serum sampling between 08.00h-11.00h and 16.00h- 19.00h. Peripheral tissue cortisol was measured from 20-minute sampling of interstitial fluid, over 24-hours, at 16-24 weeks and 30-36 weeks (obese n=7, lean n=8), and non-pregnant controls (obese n=4, lean n=3). Total circulating serum cortisol levels were higher in pregnancy than non-pregnancy in lean and obese, and increased significantly with advancing gestation in lean but not in obese. Pulsatility of cortisol was demonstrated in interstitial fluid in both non-pregnancy and pregnancy. In obese pregnancy, interstitial fluid pulse frequency was lower with advancing gestation. This may be a novel mechanism underlying the observed decreased HPA axis activity in obese pregnancy. Placental cortisol metabolism and transport was studied using an ex vivo placental perfusion model, perfused with a deuterium-labelled cortisol tracer combined with computational modeling. The findings challenge the concept that maternal cortisol diffuses freely across the placenta, but confirmed that 11β- HSD2 acts as major ‘barrier’ to cortisol transfer to the fetus, protecting the fetus from the high maternal circulating cortisol levels. In addition we showed preliminary evidence of local cortisol production within the placenta. The model is able to predict maternal-fetal cortisol transfer and can now be used in future experimental design. In conclusion, in obese pregnancy, lower maternal cortisol and urinary clearance suggested reduced HPA axis activity. Altered glucocorticoid pulsatility may underlie this change. Future studies of placental cortisol metabolism in maternal obesity could be conducted using an ex vivo perfusion model. The lower HPA axis activity in obese pregnancy represents a novel pathway underlying increased fetal growth

    Paired peers: Moving on up? Project Report

    Get PDF
    Paired Peers Phase 2 (August 2014 - July 2017)followed up Paired Peers: Class and the Student Experience, also funded by Leverhulme Trust, which ran from September 2010 to August 2013. This project followed a cohort of students from Bristol’s two universities through three years of their degree. The students were drawn from eleven different disciplines (which had to be taught at both universities) and were matched by class: for example, we recruited four Law students from each university, two we identified as working-class and two as middle-class

    Solution Focused Financial Therapy: A Brief Report of a Pilot Study

    Get PDF
    The financial counseling, financial planning, and financial therapy fields are hampered by a conceptual and empirical paucity of clinical and experimental evidence-based research. In an attempt to decrease this gap in the literature, a pilot study was developed to test the implementation of a solution-focused financial therapy client intervention approach, in which solution-focused therapy techniques were applied in a financial counseling setting. This paper reports findings from a clinical intervention study of college students (N = 8) who presented a variety of financial issues related to budgeting, investing, and debt repayment problems. Data were gathered prior to the start of treatment, after treatment ended, and three months later. Participants’ psychological well-being and financial behaviors improved, while financial distress decreased. The solution-focused financial therapy approach used is discussed

    ENDO-Pore:high-throughput linked-end mapping of single DNA cleavage events using nanopore sequencing

    Get PDF
    Mapping the precise position of DNA cleavage events plays a key role in determining the mechanism and function of endonucleases. ENDO-Pore is a high-throughput nanopore-based method that allows the time resolved mapping single molecule DNA cleavage events in vitro. Following linearisation of a circular DNA substrate by the endonuclease, a resistance cassette is ligated recording the position of the cleavage event. A library of single cleavage events is constructed and subjected to rolling circle amplification to generate concatemers. These are sequenced and used to produce accurate consensus sequences. To identify the cleavage site(s), we developed CSI (Cleavage Site Investigator). CSI recognizes the ends of the cassette ligated into the cleaved substrate and triangulates the position of the dsDNA break. We firstly benchmarked ENDO-Pore using Type II restriction endonucleases. Secondly, we analysed the effect of crRNA length on the cleavage pattern of CRISPR Cas12a. Finally, we mapped the time-resolved DNA cleavage by the Type ISP restriction endonuclease LlaGI that introduces random double-strand breaks into its DNA substrates

    Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression

    Get PDF
    Background Anterior cingulate cortex (ACC) and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD). Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI) and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression. Method Nineteen MDD and 20 never-depressed (ND) control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning. Results ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum. Conclusions These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments
    • …
    corecore