2,471 research outputs found

    Periodic Pattern in the Residual-Velocity Field of OB Associations

    Full text link
    An analysis of the residual-velocity field of OB associations within 3 kpc of the Sun has revealed periodic variations in the radial residual velocities along the Galactic radius vector with a typical scale length of lambda=2.0(+/-0.2) kpc and a mean amplitude of fR=7(+/-1) km/s. The fact that the radial residual velocities of almost all OB-associations in rich stellar-gas complexes are directed toward the Galactic center suggests that the solar neighborhood under consideration is within the corotation radius. The azimuthal-velocity field exhibits a distinct periodic pattern in the region 0<l<180 degrees, where the mean azimuthal-velocity amplitude is ft=6(+/-2) km/s. There is no periodic pattern of the azimuthal-velocity field in the region 180<l<360 degrees. The locations of the Cygnus arm, as well as the Perseus arm, inferred from an analysis of the radial- and azimuthal-velocity fields coincide. The periodic patterns of the residual-velocity fields of Cepheids and OB associations share many common features.Comment: 21 page

    Tunneling Spectroscopy of Two-level Systems Inside Josephson Junction

    Full text link
    We consider a two-level (TL) system with energy level separation Omega_0 inside a Josephson junction. The junction is shunted by a resistor R and is current I (or voltage V = RI) biased. If the TL system modulates the Josephson energy and/or is optically active, it is Rabi driven by the Josephson oscillations in the running phase regime near the resonance 2eV = Omega_0. The Rabi oscillations, in turn, translate into oscillations of current and voltage which can be detected in noise measurements. This effect provides an option to fully characterize the TL systems and to find the TL's contribution to the decoherence when the junction is used as a qubit.Comment: 4 page

    Identification of Coulomb blockade and macroscopic quantum tunneling by noise

    Full text link
    The effects of Macroscopic Quantum Tunneling (MQT) and Coulomb Blockade (CB) in Josephson junctions are of considerable significance both for the manifestations of quantum mechanics on the macroscopic scale and potential technological applications. These two complementary effects are shown to be clearly distinguishable from the associated noise spectra. The current noise is determined exactly and a rather sharp crossover between flux noise in the MQT and charge noise in the CB regions is found as the applied voltage is changed. Related results hold for the voltage noise in current-biased junctions.Comment: 6 pages, 3 figures, epl.cls include

    Macroscopic quantum tunneling in globally coupled series arrays of Josephson junctions

    Full text link
    We present a quantitative analysis of an escape rate for switching from the superconducting state to a resistive one in series arrays of globally coupled Josephson junctions. A global coupling is provided by an external shunting impedance. Such an impedance can strongly suppress both the crossover temperature from the thermal fluctuation to quantum regimes, and the macroscopic quantum tunneling (MQT) in short Josephson junction series arrays. However, in large series arrays we obtain an enhancement of the crossover temperature, and a giant increase of the MQT escape rate. The effect is explained by excitation of a {\it spatial-temporal charge instanton} distributed over a whole structure. The model gives a possible explanation of recently published experimental results on an enhancement of the MQT in single crystals of high-TcT_c superconductors.Comment: 4 pages, 3 figure

    Measuring non-Gaussian fluctuations through incoherent Cooper pair current

    Get PDF
    We study a Josephson junction (JJ) in the regime of incoherent Cooper pair tunneling, capacitively coupled to a nonequilibrium noise source. The current-voltage (I-V) characteristics of the JJ are sensitive to the excess voltage fluctuations in the source, and can thus be used for wide-band noise detection. Under weak driving, the odd part of the I-V can be related to the second cumulant of noise, whereas the even part is due to the third cumulant. After calibration, one can measure the Fano factors for the noise source, and get information about the frequency dependence of the noise.Comment: 4 pages, 4 figure

    Inverse proximity effect in superconductors near ferromagnetic material

    Full text link
    We study the electronic density of states in a mesoscopic superconductor near a transparent interface with a ferromagnetic metal. In our tunnel spectroscopy experiment, a substantial density of states is observed at sub-gap energies close to a ferromagnet. We compare our data with detailed calculations based on the Usadel equation, where the effect of the ferromagnet is treated as an effective boundary condition. We achieve an excellent agreement with theory when non-ideal quality of the interface is taken into account.Comment: revised, 7 pages, 3 figure

    Weber blockade theory of magnetoresistance oscillations in superconducting strips

    Get PDF
    Recent experiments on the conductance of thin, narrow superconducting strips have found periodic fluctuations, as a function of the perpendicular magnetic field, with a period corresponding to approximately two flux quanta per strip area [A. Johansson et al., Phys. Rev. Lett. {\bf 95}, 116805 (2005)]. We argue that the low-energy degrees of freedom responsible for dissipation correspond to vortex motion. Using vortex/charge duality, we show that the superconducting strip behaves as the dual of a quantum dot, with the vortices, magnetic field, and bias current respectively playing the roles of the electrons, gate voltage and source-drain voltage. In the bias-current vs. magnetic-field plane, the strip conductance displays what we term `Weber blockade' diamonds, with vortex conductance maxima (i.e., electrical resistance maxima) that, at small bias-currents, correspond to the fields at which strip states of NN and N+1N+1 vortices have equal energy.Comment: 4+a bit pages, 3 figures, 1 tabl

    Density of states in a superconductor carrying a supercurrent

    Full text link
    We have measured the tunneling density of states (DOS) in a superconductor carrying a supercurrent or exposed to an external magnetic field. The pair correlations are weakened by the supercurrent, leading to a modification of the DOS and to a reduction of the gap. As predicted by the theory of superconductivity in diffusive metals, we find that this effect is similar to that of an external magnetic field.Comment: To be published in Physical Review Letter

    Coulomb charging energy for arbitrary tunneling strength

    Full text link
    The Coulomb energy of a small metallic island coupled to an electrode by a tunnel junction is investigated. We employ Monte Carlo simulations to determine the effective charging energy for arbitrary tunneling strength. For small tunneling conductance, the data agree with analytical results based on a perturbative treatment of electron tunneling, while for very strong tunneling recent semiclassical results for large conductance are approached. The data allow for an identification of the range of validity of various analytical predictions.Comment: 4 pages REVTeX, incl 3 figures, to appear in Europhys.Let
    corecore