281 research outputs found

    Stability Tests of Alkynygold(I)(NHC) Complexes by HPLC-DAD-MS

    Get PDF
    Gold organometallic compounds have been extensively investigated as potential anticancer metallodrugs and have shown a high potential regarding antiproliferative effects [Hickey, 2008; Andermark, 2016; Meyer, 2012; Schmidt, 2019]. Enhanced stability is a driving argument for the design of gold complexes with N-heterocyclic carbene (NHC) ligands. The more surprising is the lack of methods of pharmaceutical analytics for their stability and solution chemistry. Such analytical methods are important key elements for future metabolomic investigations and will help to ensure a better understanding of the biological behavior of the complexes [Kostiainen, 2003]. We selected complexes of the type of alkynylgold(I)(NHC) for detailed stability studies by HPLC-DAD-MS, in comparison to the well-known antirheumatic drug Auranofin. A RP-based chromatographic method was established to separate possible degradation products of alkynylgold(I)(NHC) complexes. The stability studies were performed at 37°C over 24h using dimethylformamide (DMF), dimethyl sulfoxide (DMSO), water and Dulbecco`s modified eagle medium (DMEM) solutions of each compound. Furthermore, interaction experiments of alkynylgold(I)(NHC) complexes with acetylcysteine are under way with the same set-up as the stability tests [Albert 2012]. ESI (+) and (-) ionisation with a quadrupole analyser was used for mass spectrometry. The first results indicate that alkynylgold(I)(NHC) complexes are stable in the analysed solvents with no significant changes in their AUCs [Fig 2]

    Organometallic Anticancer Compounds

    Get PDF

    Study of the effect of the chromophore and nuclearity on the aggregation and potential biological activity of gold(I) alkynyl complexes

    Get PDF
    The synthesis and characterization of four organometallic gold(I) complexes containing different water soluble phosphanes (TPPTS, PTA and DAPTA) and chromophoric units (4-pyridylethynyl and propargyloxycoumarin) is here reported. The analysis of their absorption and emission spectra led us to attribute their luminescent behavior to the chromophoric organic ligands. Moreover, the presence of the gold(I) metal atom has been observed to be the responsible of an efficient intersystem crossing process responsible for the observed phosphorescence emission. Broad emission bands are observed in most cases due to the formation of organized aggregates in solution in agreement with microscopic characterization. Biological activity of the complexes showed very low effects against tumor cell growth but an inhibitory potency against thioredoxin reductase (TrxR). The missing/low cytotoxic effects could be related to a low bioavailability as determined by atomic absorption spectroscopy. Graphical abstract The synthesis, characterization, aggregation and emissive properties of four organometallic gold(I) complexes containing different water soluble phosphanes and chromophoric units is here reported. Biological activity of the complexes showed very low effects against tumor cell growth but an inhibitory potency against thioredoxin reductase (TrxR

    Preparation and antitumoral activity of au-based inorganic-organometallic nanocomposites

    Get PDF
    The synergy between gelator molecules and nanostructured materials is currently a novel matter of study. The possibility to carefully design the skeleton of the molecular entity as well as the nanostructure's morphological and chemical features offers the possibility to prepare a huge variety of nanocomposites with properties potentially different than just the sum of those of the individual building blocks. Here we describe the synthesis and characterization of nanocomposites made by the unconventional combination of phosphine-Au(I)-alkynyl-based organometallic gelating molecules and plasmonic Au nanoparticles. Our results indicate that the interaction between the two moieties leads to a significant degree of aggregation in both hydrophilic and hydrophobic media, either when using DAPTA or PTA-based organometallic molecules, with the formation of a sponge-like hybrid powder upon solvent evaporation. The biological activity of the nanocomposites was assessed, suggesting the existence of a synergetic effect evidenced by the higher cytotoxicity of the hybrid systems with respect to that of any of their isolated counterparts. These results represent a preliminary proof-of-concept for the exploitation of these novel nanocomposites in the biomedical field

    Synthesis, structure and cytotoxicity of cyclic (alkyl)(amino) carbene and acyclic carbene complexes of group 11 metals

    Get PDF
    A series of complexes of cyclic (alkyl)(amino)carbene (CAAC) complexes of copper, silver and gold have been investigated for their antiproliferative properties. A second series of acyclic carbene (ACC) complexes of gold(I) were prepared by nucleophilic attack on isocyanide complexes by amines and amino esters, to give (ACC)AuCl, [(ACC)Au(PTA)]+ (PTA = triazaphosphaadamantane), as well as mixed-carbene compounds [(CAAC)Au(ACC)]+. Representative complexes were characterised by X-ray diffraction which confirmed the mononuclear linear structures without close intermolecular contacts or aurophilic interactions. The redox properties of these complexes have been determined. The compounds were tested against a panel of human cancer cell lines including leukemia (HL 60), breast adenocarcinoma cells (MCF-7) and human lung adenocarcinoma epithelial cell lines (A549), which show varying degrees of cisplatin resistance. The pro-ligand iminium salts and the PTA complexes were non-toxic. By contrast, the CAAC complexes show high cytotoxicity, with IC50 values in the sub-micromolar to ∌100 nanomolar range, even against cisplatin-insensitive MCF-7 and A549 cells. Cationic bis-carbene complexes [(Me2CAAC)2M]+ (6–8, M = Cu, Ag and Au) proved particularly effective. The mechanism of cell growth control by these complexes remains to be established, although possible modes of action such as inhibition of thioredoxin reductase (TrxR), which is a common pathway for gold NHC compounds, or the formation of reactive oxygen species (ROS) through redox processes, could be ruled out as primary pathways

    Cyclometallated Au(III) dithiocarbamate complexes: synthesis, anticancer evaluation and mechanistic studies

    Get PDF
    A series of cationic mixed cyclometallated (C^N)Au(III) dithiocarbamate complexes has been synthesized in good yields [HC^N = 2-(p-t-butylphenyl)pyridine]. The crystal structure of [(C^N)AuS2CNEt2]PF6 (3) has been determined. The cytotoxic properties of the new complexes have been evaluated in vitro against a panel of human cancer cell lines and healthy cells and compared with a neutral mixed (C^C)Au(III) dithiocarbamate complex (C^C = 4,4â€Č-di-t-butylbiphenyl-2,2â€Č-diyl). The complexes appeared to be susceptible to reduction by glutathione but were stable in the presence of N-acetyl cysteine. The potential mechanism of action of this class of compounds has been investigated by measuring the intracellular uptake of some selected complexes, by determining their interactions with higher order DNA structures, and by assessing the ability to inhibit thioredoxin reductase. The complexes proved unable to induce the formation of reactive oxygen species. The investigations add to the picture of the possible mode of action of this class of complexes

    Study of the effect of the chromophore and nuclearity on the aggregation and potential biological activity of gold(I) alkynyl complexes

    Get PDF
    The synthesis and characterization of four organometallic gold(I) complexes containing different water soluble phosphanes (TPPTS, PTA and DAPTA) and chromophoric units (4-pyridylethynyl and propargyloxycoumarin) is here reported. The analysis of their absorption and emission spectra led us to attribute their luminescent behavior to the chromophoric organic ligands. Moreover, the presence of the gold(I) metal atom has been observed to be the responsible of an efficient intersystem crossing process responsible for the observed phosphorescence emission. Broad emission bands are observed in most cases due to the formation of organized aggregates in solution in agreement with microscopic characterization.; Biological activity of the complexes showed very low effects against tumor cell growth but an inhibitory potency against thioredoxin reductase (TrxR). The missing/low cytotoxic effects could be related to a low bioavailability as determined by atomic absorption spectroscopy. (C) 2016 Elsevier B.V. All rights reserved.Postprint (author's final draft

    The plant decapeptide OSIP108 can alleviate mitochondrial dysfunction induced by cisplatin in human cells

    Get PDF
    We investigated the effect of the Arabidopsis thaliana-derived decapeptide OSIP108 on human cell tolerance to the chemotherapeutic agent cisplatin (Cp), which induces apoptosis and mitochondrial dysfunction. We found that OSIP108 increases the tolerance of HepG2 cells to Cp and prevents Cp-induced changes in basic cellular metabolism. More specifically, we demonstrate that OSIP108 reduces Cp-induced inhibition of respiration, decreases glycolysis and prevents Cp-uptake in HepG2 cells. Apart from its protective action against Cp in human cells, OSIP108 also increases the yeast Saccharomyces cerevisiae tolerance to Cp. A limited yeast-based study of OSIP108 analogs showed that cyclization does not severely affect its activity, which was further confirmed in HepG2 cells. Furthermore, the similarity in the activity of the D-stereoisomer (mirror image) form of OSIP108 with the L stereoisomer suggests that its mode of action does not involve binding to a stereospecific receptor. In addition, as OSIP108 decreases Cp uptake in HepG2 cells and the anti-Cp activity of OSIP108 analogs without free cysteine is reduced, OSIP108 seems to protect against Cp-induced toxicity only partly via complexation. Taken together, our data indicate that OSIP108 and its cyclic derivatives can protect against Cp-induced toxicity and, thus, show potential as treatment options for mitochondrial dysfunction- and apoptosis-related conditions

    Extracorporeal immune therapy with immobilized agonistic anti-Fas antibodies leads to transient reduction of circulating neutrophil numbers and limits tissue damage after hemorrhagic shock/resuscitation in a porcine model

    Get PDF
    Background: Hemorrhagic shock/resuscitation is associated with aberrant neutrophil activation and organ failure. This experimental porcine study was done to evaluate the effects of Fas-directed extracorporeal immune therapy with a leukocyte inhibition module (LIM) on hemodynamics, neutrophil tissue infiltration, and tissue damage after hemorrhagic shock/resuscitation. Methods: In a prospective controlled double-armed animal trial 24 Munich Mini Pigs (30.3 +/- 3.3 kg) were rapidly haemorrhaged to reach a mean arterial pressure (MAP) of 35 +/- 5 mmHg, maintained hypotensive for 45 minutes, and then were resuscitated with Ringer's solution to baseline MAP. With beginning of resuscitation 12 pigs underwent extracorporeal immune therapy for 3 hours (LIM group) and 12 pigs were resuscitated according to standard medical care (SMC). Haemodynamics, haematologic, metabolic, and organ specific damage parameters were monitored. Neutrophil infiltration was analyzed histologically after 48 and 72 hours. Lipid peroxidation, and apoptosis were specifically determined in lung, bowel, and liver. Results: In the LIM group, neutrophil counts were reduced versus SMC during extracorporeal immune therapy. After 72 hours, the haemodynamic parameters MAP and cardiac output (CO) were significantly better in the LIM group. Histological analyses showed reduction of shock-related neutrophil tissue infiltration in the LIM group, especially in the lungs. Lower amounts of apoptotic cells and lipid peroxidation were found in organs after LIM treatment. Conclusions: Transient Fas-directed extracorporeal immune therapy may protect from posthemorrhagic neutrophil tissue infiltration and tissue damage

    Ferrocenyl-coupled n-heterocyclic carbene complexes of gold(i): a successful approach to multinuclear anticancer drugs

    Get PDF
    Four gold(I) carbene complexes featuring 4-ferrocenyl substituted imidazol-2-ylidene ligands were investigated for antiproliferative and antivascular properties. They were active against a panel of seven cancer cell lines, including multidrug-resistant ones, with low micromolar or nanomolar IC50 (72 h) values, according to their lipophilicity and cellular uptake. The delocalised lipophilic cationic complexes 8 and 10 acted by increasing the reactive oxygen species in two ways: via a genuine ferrocene effect and by inhibiting the thioredoxin reductase. Both complexes gave rise to a reorganization of the F-actin cytoskeleton in endothelial and melanoma cells, associated with a G1 phase cell cycle arrest and a retarded cell migration. They proved antiangiogenic in tube formation assays with endothelial cells and vascular-disruptive on real blood vessels in the chorioallantoic membrane of chicken eggs. Biscarbene complex 10 was also tolerated well by mice where it led to a volume reduction of xenograft tumors by up to 80%
    • 

    corecore