149 research outputs found

    CONRAD-2: Cold Neutron Tomography and Radiography at BER II (V7)

    Get PDF
    V7 has widely been recognized as a versatile and flexible instrument for innovative neutron imaging and has made decisive contributions to the development of new methods by exploiting different contrast mechanisms for imaging. The reason for the success in method development is the flexibility of the facility which permits very fast change of the instrument’s configuration and allows for performing non-standard experiments. The ability for complementary experiments with the laboratory X-ray tomographic scanner (MicroCT Lab) offers the opportunity to study samples at different contrast levels and spatial resolution scales

    Stochastic model for the 3D microstructure of pristine and cyclically aged cathodes in Li-ion batteries

    Full text link
    It is well-known that the microstructure of electrodes in lithium-ion batteries strongly affects their performance. Vice versa, the microstructure can exhibit strong changes during the usage of the battery due to aging effects. For a better understanding of these effects, mathematical analysis and modeling has turned out to be of great help. In particular, stochastic 3D microstructure models have proven to be a powerful and very flexible tool to generate various kinds of particle-based structures. Recently, such models have been proposed for the microstructure of anodes in lithium-ion energy and power cells. In the present paper, we describe a stochastic modeling approach for the 3D microstructure of cathodes in a lithium-ion energy cell, which differs significantly from the one observed in anodes. The model for the cathode data enhances the ideas of the anode models, which have been developed so far. It is calibrated using 3D tomographic image data from pristine as well as two aged cathodes. A validation based on morphological image characteristics shows that the model is able to realistically describe both, the microstructure of pristine and aged cathodes. Thus, we conclude that the model is suitable to generate virtual, but realistic microstructures of lithium-ion cathodes

    An X-ray tomographic study of rechargeable Zn/MnO2 batteries

    Get PDF
    We present non-destructive and non-invasive in operando X-ray tomographic investigations of the charge and discharge behavior of rechargeable alkaline-manganese (RAM) batteries (Zn-MnO2 batteries). Changes in the three-dimensional structure of the zinc anode and the MnO2 cathode material after several charge/discharge cycles were analyzed. Battery discharge leads to a decrease in the zinc particle sizes, revealing a layer-by-layer dissolving behavior. During charging, the particles grow again to almost their initial size and shape. After several cycles, the particles sizes slowly decrease until most of the particles become smaller than the spatial resolution of the tomography. Furthermore, the number of cracks in the MnO2 bulk continuously increases and the separator changes its shape. The results are compared to the behavior of a conventional primary cell that was also charged and discharged several times.DFG, 325093850, Open Access Publizieren 2017 - 2018 / Technische UniversitÀt Berli

    Testing contrast agents to improve micro computerized tomography (ÎŒCT) for spatial location of organic matter and biological material in soil

    Get PDF
    Soil carbon is essential for soil and ecosystem functioning. Its turnover and storage in soil are multifaceted processes that involve microbial activity in complex physical matrices. Biological litter, which include plants, animals, and microorganisms, is decomposed in soil stimulating soil biota (archaea, bacteria, fungi, protists, and animals) activity and yielding soil organic matter (SOM). Such decomposition processes are influenced by local physico-chemical characteristics including the spatial distribution of aggregates and pores. More refined analytical tools are needed to better understand these processes, especially considering the spatial 3D structure of soil matrices. Using synchrotron radiation (X-ray) micro computerized tomography (SR-ÎŒCT), we tested different contrast agents (staining methods) based on silver (Ag), eosin (Br based), and liquid and gaseous iodine (I) in order to spatially image biological material and SOM in soil samples. We also performed K-edge SR-ÎŒCT for the Ag and I2 treatments and conventional ÎŒCT for additional soil samples applying the I2 treatment. Our results indicated that I2 was the most efficient contrast method for SR-ÎŒCT imaging of soil samples. I2 qualitatively improved the images, but mainly, by using the K-edge SR-ÎŒCT, this method provided a powerful tool to determine the spatial location of SOM. We acknowledge that the use of SR-ÎŒCT is an expensive technique to study soil samples, which comes with bottlenecks in terms of access to facilities and measurement time. Nevertheless, we show that the I2 treatment improved soil images also using standard ÎŒCT. In conventional ÎŒCT the I2 treatment improved the visualization of biological material and consequently improved the qualitative analysis of fine plants roots and micro-fauna (Collembola). This improvement may have a positive implication in soil biology, by improving a non-destructive method to detect fungi (SR-ÎŒCT), soil fauna (conventional ÎŒCT) and roots in undisturbed soil samples. An unexpected finding was that the I2 treatment also stained the plastic sample containers (nylon and polyimide), indicating the potential for the I2 staining procedure to be applied for the detection of plastic pollution in soil samples

    Particle-stabilised foams: structure and aging

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We show that aqueous foams stabilised by nanoparticles can be easily imaged using an X-ray laboratory source. We have used hydrophobically modified silica nanoparticles that confer to the foam a remarkable stability. The X-ray tomography observations were compared with the information obtained using a multiple light scattering technique. Both techniques confirm that provided the concentration of particles in bulk water is high enough, the bubble size evolves little with time. X-Ray tomography revealed the presence of two populations of bubbles, small bubbles which size tends to decrease with time and large bubbles which number tends to increase with time. This behaviour could arise from an arrested coarsening process. The results demonstrate the great potential of the two techniques and of their combination for foam studies

    Improvement of Oxygen-Depolarized Cathodes in Highly Alkaline Media by Electrospinning of Poly(vinylidene fluoride) Barrier Layers

    Get PDF
    Oxygen‐depolarized cathodes (ODC) were developed for chlor‐alkali electrolysis to replace the hydrogen evolution reaction (HER) by the oxygen reduction reaction (ORR) providing electrical energy savings up to 30 % under industrially relevant conditions. These electrodes consist of micro sized silver grains and polytetrafluoroethylene, forming a homogeneous electrode structure. In this work, we report on the modification of ODCs by implementing an electrospun layer of hydrophobic poly(vinylidene fluoride) (PVDF) into the ODC structure, leading to a significantly enhanced ORR performance. The modified electrodes are physically characterized by liquid flow porometry, contact angle measurements and scanning electron microscopy. Electrochemical characterization is performed by linear sweep voltammetry and chronopotentiometry. The overpotential for ORR at application near conditions could be reduced by up to 75 mV at 4 kA m−2 and 135 mV at a higher current density of 9.5 kA m−2. Consequently, we propose that modifying ODCs by electrospinning is an effective and cost‐efficient way to further reduce the energy demand of the ORR in highly alkaline media
    • 

    corecore