2,130 research outputs found
Wideband digital phase comparator for high current shunts
A wideband phase comparator for precise measurements of phase difference of
high current shunts has been developed at INRIM. The two-input digital phase
detector is realized with a precision wideband digitizer connected through a
pair of symmetric active guarded transformers to the outputs of the shunts
under comparison. Data are first acquired asynchronously, and then transferred
from on-board memory to host memory. Because of the large amount of data
collected the filtering process and the analysis algorithms are performed
outside the acquisition routine. Most of the systematic errors can be
compensated by a proper inversion procedure.
The system is suitable for comparing shunts in a wide range of currents, from
several hundred of milliampere up to 100 A, and frequencies ranging between 500
Hz and 100 kHz. Expanded uncertainty (k=2) less than 0.05 mrad, for frequency
up to 100 kHz, is obtained in the measurement of the phase difference of a
group of 10 A shunts, provided by some European NMIs, using a digitizer with
sampling frequency up to 1 MHz. An enhanced version of the phase comparator
employs a new digital phase detector with higher sampling frequency and
vertical resolution. This permits to decrease the contribution to the
uncertainty budget of the phase detector of a factor two from 20 kHz to 100
kHz. Theories and experiments show that the phase difference between two high
precision wideband digitizers, coupled as phase detector, depends on multiple
factors derived from both analog and digital imprint of each sampling system.Comment: 20 pages, 9 figure
Why 'scaffolding' is the wrong metaphor : the cognitive usefulness of mathematical representations.
The metaphor of scaffolding has become current in discussions of the cognitive help we get from artefacts, environmental affordances and each other. Consideration of mathematical tools and representations indicates that in these cases at least (and plausibly for others), scaffolding is the wrong picture, because scaffolding in good order is immobile, temporary and crude. Mathematical representations can be manipulated, are not temporary structures to aid development, and are refined. Reflection on examples from elementary algebra indicates that Menary is on the right track with his ‘enculturation’ view of mathematical cognition. Moreover, these examples allow us to elaborate his remarks on the uniqueness of mathematical representations and their role in the emergence of new thoughts.Peer reviewe
Thick tori around AGN: the case for extended tori and consequences for their X-ray and IR emission
Two families of models of dusty tori in AGNs (moderately thick and extended
versus very thick and compact) are tested against available observations. The
confrontation suggests that the former class better explains the IR broad-band
spectra of both broad and narrow line AGNs, the anisotropy of the emission
deduced by comparing IR properties of Seyfert 1 and 2 nuclei, the results of IR
spectroscopy and those of high spatial resolution observations. There is
however clear evidence for a broad distribution of optical depths. We also
examine the relationship between IR and X-ray emission. The data support a view
in which the matter responsible for the X-ray absorption is mostly dust free,
lying inside the dust sublimation radius. The consequences of these results for
the hard X-ray background as well as IR counts and background are discussed.Comment: 33 pages, 9 Postscript figures, to appear in ApJ, September 199
Effects of crack tip geometry on dislocation emission and cleavage: A possible path to enhanced ductility
We present a systematic study of the effect of crack blunting on subsequent
crack propagation and dislocation emission. We show that the stress intensity
factor required to propagate the crack is increased as the crack is blunted by
up to thirteen atomic layers, but only by a relatively modest amount for a
crack with a sharp 60 corner. The effect of the blunting is far less
than would be expected from a smoothly blunted crack; the sharp corners
preserve the stress concentration, reducing the effect of the blunting.
However, for some material parameters blunting changes the preferred
deformation mode from brittle cleavage to dislocation emission. In such
materials, the absorption of preexisting dislocations by the crack tip can
cause the crack tip to be locally arrested, causing a significant increase in
the microscopic toughness of the crack tip. Continuum plasticity models have
shown that even a moderate increase in the microscopic toughness can lead to an
increase in the macroscopic fracture toughness of the material by several
orders of magnitude. We thus propose an atomic-scale mechanism at the crack
tip, that ultimately may lead to a high fracture toughness in some materials
where a sharp crack would seem to be able to propagate in a brittle manner.
Results for blunt cracks loaded in mode II are also presented.Comment: 12 pages, REVTeX using epsfig.sty. 13 PostScript figures. Final
version to appear in Phys. Rev. B. Main changes: Discussion slightly
shortened, one figure remove
Riemann's theorem for quantum tilted rotors
The angular momentum, angular velocity, Kelvin circulation, and vortex
velocity vectors of a quantum Riemann rotor are proven to be either (1) aligned
with a principal axis or (2) lie in a principal plane of the inertia ellipsoid.
In the second case, the ratios of the components of the Kelvin circulation to
the corresponding components of the angular momentum, and the ratios of the
components of the angular velocity to those of the vortex velocity are analytic
functions of the axes lengths.Comment: 8 pages, Phys. Rev.
‘Warrant’ revisited: Integrating mathematics teachers’ pedagogical and epistemological considerations into Toulmin’s model for argumentation
In this paper, we propose an approach to analysing teacher arguments that takes into account field dependence—namely, in Toulmin’s sense, the dependence of warrants deployed in an argument on the field of activity to which the argument relates. Freeman, to circumvent issues that emerge when we attempt to determine the field(s) that an argument relates to, proposed a classification of warrants (a priori, empirical, institutional and evaluative). Our approach to analysing teacher arguments proposes an adaptation of Freeman’s classification that distinguishes between: epistemological and pedagogical a priori warrants, professional and personal empirical warrants, epistemological and curricular institutional warrants, and evaluative warrants. Our proposition emerged from analyses conducted in the course of a written response and interview study that engages secondary mathematics teachers with classroom scenarios from the mathematical areas of analysis and algebra. The scenarios are hypothetical, grounded on seminal learning and teaching issues, and likely to occur in actual practice. To illustrate our proposed approach to analysing teacher arguments here, we draw on the data we collected through the use of one such scenario, the Tangent Task. We demonstrate how teacher arguments, not analysed for their mathematical accuracy only, can be reconsidered, arguably more productively, in the light of other teacher considerations and priorities: pedagogical, curricular, professional and personal
Exploring impulsive solar magnetic energy release and particle acceleration with focused hard X-ray imaging spectroscopy
How impulsive magnetic energy release leads to solar eruptions and how those eruptions are energized and evolve are vital unsolved problems in Heliophysics. The standard model for solar eruptions summarizes our current understanding of these events. Magnetic energy in the corona is released through drastic restructuring of the magnetic field via reconnection. Electrons and ions are then accelerated by poorly understood processes. Theories include contracting loops, merging magnetic islands, stochastic acceleration, and turbulence at shocks, among others. Although this basic model is well established, the fundamental physics is poorly understood. HXR observations using grazing-incidence focusing optics can now probe all of the key regions of the standard model. These include two above-the-looptop (ALT) sources which bookend the reconnection region and are likely the sites of particle acceleration and direct heating. The science achievable by a direct HXR imaging instrument can be summarized by the following science questions and objectives which are some of the most outstanding issues in solar physics (1) How are particles accelerated at the Sun? (1a) Where are electrons accelerated and on what time scales? (1b) What fraction of electrons is accelerated out of the ambient medium? (2) How does magnetic energy release on the Sun lead to flares and eruptions? A Focusing Optics X-ray Solar Imager (FOXSI) instrument, which can be built now using proven technology and at modest cost, would enable revolutionary advancements in our understanding of impulsive magnetic energy release and particle acceleration, a process which is known to occur at the Sun but also throughout the Universe
DMTPC: A dark matter detector with directional sensitivity
By correlating nuclear recoil directions with the Earth's direction of motion
through the Galaxy, a directional dark matter detector can unambiguously detect
Weakly Interacting Massive Particles (WIMPs), even in the presence of
backgrounds. Here, we describe the Dark Matter Time-Projection Chamber (DMTPC)
detector, a TPC filled with CF4 gas at low pressure (0.1 atm). Using this
detector, we have measured the vector direction (head-tail) of nuclear recoils
down to energies of 100 keV with an angular resolution of <15 degrees. To study
our detector backgrounds, we have operated in a basement laboratory on the MIT
campus for several months. We are currently building a new, high-radiopurity
detector for deployment underground at the Waste Isolation Pilot Plant facility
in New Mexico.Comment: 4 pages, 2 figures, proceedings for the CIPANP 2009 conference, May
26-31, 200
Time-odd mean fields in the rotating frame: microscopic nature of nuclear magnetism
The microscopic role of nuclear magnetism in rotating frame is investigated
for the first time in the framework of the cranked relativistic mean field
theory. It is shown that nuclear magnetism modifies the expectation values of
single-particle spin, orbital and total angular momenta along the rotational
axis effectively creating additional angular momentum. This effect leads to the
increase of kinematic and dynamic moments of inertia at given rotational
frequency and has an impact on effective alignments.Comment: 16 pages, 4 figures, submitted to Physical Review
The Variability of Seyfert 1.8 and 1.9 Galaxies at 1.6 microns
We present a study of Seyfert 1.5-2.0 galaxies observed at two epochs with
the Hubble Space Telescope (HST) at 1.6 microns. We find that unresolved
nuclear emission from 9 of 14 nuclei varies at the level of 10-40% on
timescales of 0.7-14 months, depending upon the galaxy. A control sample of
Seyfert galaxies lacking unresolved sources and galaxies lacking Seyfert nuclei
show less than 3% instrumental variation in equivalent aperture measurements.
This proves that the unresolved sources are non-stellar and associated with the
central pc of active galactic nuclei. Unresolved sources in Seyfert 1.8 and 1.9
galaxies are not usually detected in HST optical surveys, however high angular
resolution infrared observations will provide a way to measure time delays in
these galaxies.Comment: accepted by ApJLetters (emulateapj latex
- …
