16 research outputs found

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF
    Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with theFluka Monte Carlo programme

    Projection Training for Engineering Student Apprentices

    No full text

    Modest cholinergic deafferentation fails to alter hippocampal G-proteins

    No full text
    The integrity of hippocampal G-protein mediated signalling following ibotenate induced lesion of the medial septum was examined. The lesion was confined histologically to the septum and induced a 23% reduction in hippocampal choline acetyltransferase (ChAT) activity and G-proteins levels and related enzyme activities were measured in the hippocampus following a 21 day survival period. The relative levels of five G-protein subunits (Gβ, Gαo, Gαi1, Gαi2, and Gαs-L), basal GTPase, the degree of carbachol- or baclofen-stimulated GTPase activities, and the basal and fluoroaluminate-stimulated adenylate cyclase activities were apparently unaffected. To determine if our assay methodology was sensitive to changes in pre-synaptic signalling, we compared G-protein density in synaptosomes with total hippocampal homogenates. The concentration of Gαq/11, Gαi1, and Gαi2, were significantly lower in synaptosomes, while Gαo, was only marginally reduced. Thus, modest lesions of the medial-septal nucleus fail to alter G-protein signalling. However, our findings that G-protein density is lower in synaptosomal membranes than in total homogenates, indicates that the analysis of signalling events in synaptosomes following deafferentation could clarify adaptive changes which may occur at the presynaptic level
    corecore