145 research outputs found

    Main Group Catalyzed Arene Borylation: Challenges and Opportunities

    Get PDF

    Haloboration: scope, mechanism and utility

    Get PDF

    Three-coordinate iron(II) expanded ring N-heterocyclic carbene complexes

    Get PDF
    A sterically demanding seven-membered expanded ring N-heterocyclic carbene (NHC) ligand allows access to rare examples of three-coordinate iron(II)-NHC complexes incorporating only halide coligands of the general formula [Fe(NHC)X 2 ] (NHC = 7-DiPP; X = Br (1) Cl (2)). Reducing the steric influence of the ancillary NHC ligand through modulation of the N-aryl substituents leads to either four- or three-coordinate complexes of the general formula [Fe(NHC)Br 2 (THF)] (3) or [Fe(NHC)Br 2 ] (4) (NHC = 7-Mes), dependent upon the solvent of recrystallization. The further reduction of NHC steric influence results in four-coordinate geometries at iron in the form of the dimeric species [Fe(NHC)Br(ÎŒ-Br)] 2 (5) or [Fe(NHC)Br 2 (THF)] (6) (NHC = SDiPP), again dependent upon the solvent of recrystallization. Compounds 1-6 have been analyzed by 1 H NMR spectroscopy, X-ray crystallography, elemental microanalysis, Mössbauer spectroscopy (for 1 and 3-5), and Evans method magnetic susceptibility. In addition to these measurements the three-coordinate species 1 and 4 have been further analyzed by SQUID magnetometry and CASSCF calculations, which show significant magnetic anisotropy that is extremely sensitive to the coordination geometry

    Low coordinate NHC-Zinc-Hydride Complexes Catalyze Alkyne C-H Borylation and Hydroboration using Pinacolborane

    Get PDF
    Organozinc compounds containing sp, sp<sup>2</sup>, and sp<sup>3</sup> C–Zn moieties undergo transmetalation with pinacolborane (HBPin) to produce Zn–H species and organoboronate esters (RBPin). This Zn–C/H–B metathesis step is key to enabling zinc-catalyzed borylation reactions, and it is used in this work to develop both terminal alkyne C–H borylation and internal alkyne hydroboration. These two conversions can be combined in one pot to achieve the zinc-catalyzed conversion of terminal alkynes to 1,1-diborylated alkenes without isolation of the sensitive (to protodeboronation) alkynyl boronate ester intermediates. Mechanistic studies involving the isolation of intermediates, stoichiometric experiments, and DFT calculations all support mechanisms involving organozinc species that undergo metathesis with HBPin. Furthermore, zinc-catalyzed hydroboration can proceed via a hydrozincation step, which does not require any exogenous catalyst in contrast to all previously reported alkyne hydrozincations. Bulky <i>N</i>-heterocyclic carbenes (NHCs) are key for effective catalysis as the NHC steric bulk enhances the stability of the NHC–Zn species present during catalysis and provides access to low-coordinate (NHC)­Zn–H cations that are electrophilic yet Brþnsted basic. This work provides an alternative approach to access synthetically desirable pinacol–organoboronate esters using earth-abundant metal-based borylation catalysts

    The synthesis of brominated-boron-doped PAHs by alkyne 1,1-bromoboration: mechanistic and functionalisation studies

    Get PDF
    The research leading to these results has received funding from the European Research Council under the Horizon 2020 Research and Innovation Program (Grant no. 769599), the Leverhulme Trust (RPG-2014-340) and the EPSRC (EP/P010482/1). C. Si thanks the China Scholarship Council (201806890001).The synthesis of a range of brominated-Bn-containing (n = 1, 2) polycyclic aromatic hydrocarbons (PAHs) is achieved simply by reacting BBr3 with appropriately substituted alkynes via a bromoboration/electrophilic C-H borylation sequence. The brominated-Bn-PAHs were isolated as either the borinic acid or B-mesityl-protected derivatives, with the latter having extremely deep LUMOs for the B2-doped PAHs (with one example having a reduction potential of E1/2 = -0.96 V versus Fc+/Fc, Fc = ferrocene). Mechanistic studies revealed the reaction sequence proceeds by initial alkyne 1,1-bromoboration. 1,1-bromoboration also was applied to access a number of unprecedented 1-bromo-2,2-diaryl substituted vinylboronate esters direct from internal alkynes. Bromoboration/C-H borylation installs useful C-Br units onto the Bn-PAHs, which were utilised in Negishi coupling reactions, including for the installation of two triarylamine donor (D) groups onto a B2-PAH. The resultant D-A-D molecule has a low optical gap with an absorption onset at 750 nm and emission centered at 810 nm in the solid state.Publisher PDFPeer reviewe

    Borylation–Reduction–Borylation for the Formation of 1,4-Azaborines

    Get PDF
    This project has received funding from the Leverhulme Trust (grant Number RPG-2022-032) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 769599). M.J.I. and E.Z.-C. also thank the EPSRC Programme Grant “Boron: Beyond the Reagent” (EP/W007517/1) for support.Given the current interest in materials containing 1,4-azaborine units, the development of new routes to these structures is important. Carbonyl directed electrophilic borylation using BBr3 is a facile method for the ortho-borylation of N,N-diaryl-amide derivatives. Subsequent addition of Et3SiH results in carbonyl reduction and then formation of 1,4-azaborines that can be protected in situ using a Grignard reagent. Overall, borylation–reduction–borylation is a one-pot methodology to access 1,4-azaborines from simple precursors.Publisher PDFPeer reviewe
    • 

    corecore