243 research outputs found

    Broadband visible two-dimensional spectroscopy of molecular dyes

    Get PDF
    Two-dimensional Fourier transform spectroscopy is a promising technique to study ultrafast molecular dynamics. Similar to transient absorption spectroscopy, a more complete picture of the dynamics requires broadband laser pulses to observe transient changes over a large enough bandwidth, exceeding the inhomogeneous width of electronic transitions, as well as the separation between the electronic or vibronic transitions of interest. Here, we present visible broadband 2D spectra of a series of dye molecules and report vibrational coherences with frequencies up to ∼1400 cm−1 that were obtained after improvements to our existing two-dimensional Fourier transform setup [Al Haddad et al., Opt. Lett. 40, 312–315 (2015)]. The experiment uses white light from a hollow core fiber, allowing us to acquire 2D spectra with a bandwidth of 200 nm, in a range between 500 and 800 nm, and with a temporal resolution of 10–15 fs. 2D spectra of nile blue, rhodamine 800, terylene diimide, and pinacyanol iodide show vibronic spectral features with at least one vibrational mode and reveal information about structural motion via coherent oscillations of the 2D signals during the population time. For the case of pinacyanol iodide, these observations are complemented by its Raman spectrum, as well as the calculated Raman activity at the ground- and excited-state geometry

    Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy

    Get PDF
    Coupling matter excitations to electromagnetic modes inside nano-scale optical resonators leads to the formation of hybrid light-matter states, so-called polaritons, allowing the controlled manipulation of material properties. Here, we investigate the photo-induced dynamics of a prototypical strongly-coupled molecular exciton-microcavity system using broadband two-dimensional Fourier transform spectroscopy and unravel the mechanistic details of its ultrafast photo-induced dynamics. We find evidence for a direct energy relaxation pathway from the upper to the lower polariton state that initially bypasses the excitonic manifold of states, which is often assumed to act as an intermediate energy reservoir, under certain experimental conditions. This observation provides new insight into polariton photophysics and could potentially aid the development of applications that rely on controlling the energy relaxation mechanism, such as in solar energy harvesting, manipulating chemical reactivity, the creation of Bose–Einstein condensates and quantum computing

    Multigenerational pedigree analysis of wild individually marked black sparrowhawks suggests that dark plumage coloration is a dominant autosomal trait

    Get PDF
    The black sparrowhawk (Accipiter melanoleucus) is a color-polymorphic sub-Saharan raptor, with adults occurring in two discrete color morphs: dark and light. It has previously been suggested that plumage coloration is determined by a one-locus two-allele system, with the light allele being dominant over the dark allele. Here, we revisit that assumption with an extended dataset of 130 individuals and pedigree information from 75 individuals spanning five generations. We test the observed offspring phenotypic ratio against the expected ratio under the Hardy- Weinberg equilibrium and find significant deviations from the expected values. Contrary to the previous assumption, our data indicate that the dark allele is in fact dominant over the light allele. Similarly, the multigenerational pedigrees obtained are incompatible with a one-locus two-allele system, where the light allele is dominant but are consistent with a scenario where the dark allele is dominant instead. However, without knowledge of the underlying molecular basis of plumage polymorphism, uncertainty remains, and the intra-morph variation observed suggests that modifier genes or environmental factors may also be involved. Our study not only provides a foundation for future research on the adaptive function of color polymorphism in the species but also highlights the need for caution when drawing conclusions about the mode of inheritance in wild animal populations in the absence of genetic data, especially when one color variant is numerically much rarer than the other.</p

    Ultraviolet photochemistry of ethane: implications for the atmospheric chemistry of the gas giants

    Get PDF
    Chemical processing in the stratospheres of the gas giants is driven by incident vacuum ultraviolet (VUV) light. Ethane is an important constituent in the atmospheres of the gas giants in our solar system. The present work describes translational spectroscopy studies of the VUV photochemistry of ethane using tuneable radiation in the wavelength range 112 ≤ λ ≤ 126 nm from a free electron laser and event-triggered, fast-framing, multi-mass imaging detection methods. Contributions from at least five primary photofragmentation pathways yielding CH_{2}, CH_{3} and/or H atom products are demonstrated and interpreted in terms of unimolecular decay following rapid non-adiabatic coupling to the ground state potential energy surface. These data serve to highlight parallels with methane photochemistry and limitations in contemporary models of the photoinduced stratospheric chemistry of the gas giants. The work identifies additional photochemical reactions that require incorporation into next generation extraterrestrial atmospheric chemistry models which should help rationalise hitherto unexplained aspects of the atmospheric ethane/acetylene ratios revealed by the Cassini–Huygens fly-by of Jupiter

    Carbon K-edge x-ray emission spectroscopy of gas phase ethylenic molecules

    Get PDF
    We report on the C K-edge x-ray absorption spectra and the resonant (RXES) and non-resonant (NXES) x-ray emission spectra of ethylene, allene and butadiene in the gas phase. The RXES and NXES show clear differences for the different molecules. Overall both types of spectra are more structured for ethylene and allene, than for butadiene. Using density functional theory–restricted open shell configuration interaction single calculations, we simulate the spectra with remarkable agreement with the experiment. We identify the spectral features as being due to transitions involving localised 1s orbitals. For allene, there are distinct spectral bands that reflect transitions predominantly from either the central or terminal carbon atoms. These results are discussed in the context of ultrafast x-ray studies aimed at detecting the passage through conical intersections in polyatomic molecules

    Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening

    Get PDF
    Photoinduced isomerization reactions lie at the heart of many chemical processes in nature. The mechanisms of such reactions are determined by a delicate interplay of coupled electronic and nuclear dynamics occurring on the femtosecond scale, followed by the slower redistribution of energy into different vibrational degrees of freedom. Here we apply time-resolved photoelectron spectroscopy with a seeded extreme ultraviolet free-electron laser to trace the ultrafast ring opening of gas-phase thiophenone molecules following ultraviolet photoexcitation. When combined with ab initio electronic structure and molecular dynamics calculations of the excited- and ground-state molecules, the results provide insights into both the electronic and nuclear dynamics of this fundamental class of reactions. The initial ring opening and non-adiabatic coupling to the electronic ground state are shown to be driven by ballistic S–C bond extension and to be complete within 350 fs. Theory and experiment also enable visualization of the rich ground-state dynamics that involve the formation of, and interconversion between, ring-opened isomers and the cyclic structure, as well as fragmentation over much longer timescales

    Defence Responses of Arabidopsis thaliana to Infection by Pseudomonas syringae Are Regulated by the Circadian Clock

    Get PDF
    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime
    • …
    corecore