230 research outputs found

    Monkeypox Virus Infections in Small Animal Models for Evaluation of Anti-Poxvirus Agents

    Get PDF
    An ideal animal model for the study of a human disease is one which utilizes a route of infection that mimics the natural transmission of the pathogen; the ability to obtain disease with an infectious dose equivalent to that causing disease in humans; as well having a disease course, morbidity and mortality similar to that seen with human disease. Additionally, the animal model should have a mode(s) of transmission that mimics human cases. The development of small animal models for the study of monkeypox virus (MPXV) has been quite extensive for the relatively short period of time this pathogen has been known, although only a few of these models have been used to study anti-poxvirus agents. We will review those MPXV small animal models that have been developed thus far for the study of therapeutic agents

    An Efficient Method for Generating Poxvirus Recombinants in the Absence of Selection

    Get PDF
    The use of selectable markers (ecogpt) and selection pressures to aid in detection of poxvirus (Vaccinia, VV) recombinants has been implicated in the unintended introduction of second site mutations. We have reinvestigated the use of the helper virus system described by Scheiflinger et al. [1] and adapted by Yao and Evans [2] which produces recombinants at a high frequency in the absence of any selection, at a rate of 6–100%. Our system uses fowlpox virus (FPV) as the infectious helper virus which in infected cells provides the enzymatic apparatus for transcription and replication of a purified, transfected VV genome and for recombination with a second transfected PCR generated DNA fragment. To optimize the system, a PCR DNA fragment was generated that contained poxvirus promoter driven gfp and lacZ genes inserted within the coding sequences of the viral thymidine kinase gene. This PCR fragment was co-transfected together with VV genomic DNA. Recombinant VV was identified by plaquing the mixture on cells non-permissive for FPV and selection of green fluorescent or LacZ positive recombinant vaccinia plaques. The system was optimized using FPV permissive cells (CEF) and non-permissive cells (A549, CV-1) for both the initial infection/transfection and the subsequent selection. Up to 70% of the progeny vaccinia virus contained the gfp/LacZ insertion. In order to test for the presence of FPV/VV intertypic recombinants or other unintended mutations, recombinant wtVV (RwtVV) was regenerated from the gfp/LacZ viruses and evaluated by RFLP analysis and pathogenesis in animals. While all RwtVVs were viable in cell culture, in many of the RwtVV isolates, RFLP differences were noted and while some recombinant viruses exhibited wild type behavior in mice, a wide range of virulence indicative of unintended changes suggests that mutants created by “rescue” systems require careful analysis particularly before use for in vivo studies employing animal models

    Successful strategies implemented towards the elimination of canine rabies in the Western Hemisphere

    Get PDF
    Almost all cases of human rabies result from dog bites, making the elimination of canine rabies a global priority. During recent decades, many countries in the Western Hemisphere have carried out large-scale dog vaccination campaigns, controlled their free-ranging dog populations and enforced legislation for responsible pet ownership. This article reviews progress in eliminating canine rabies from the Western Hemisphere. After briefly summarizing the history of control efforts and describing the approaches listed above, we note that programs in some countries have been hindered by societal attitudes and severe economic disparities, which underlines the need to discuss measures that will be required to complete the elimination of canine rabies throughout the region. We also note that there is a constant threat for dog-maintained epizootics to re-occur, so as long as dog-maintained rabies "hot spots" are still present, free-roaming dog populations remain large, herd immunity becomes low and dog-derived rabies lyssavirus (RABLV) variants continue to circulate in close proximity to rabies-naïve dog populations. The elimination of dog-maintained rabies will be only feasible if both dog-maintained and dog-derived RABLV lineages and variants are permanently eliminated. This may be possible by keeping dog herd immunity above 70% at all times, fostering sustained laboratory-based surveillance through reliable rabies diagnosis and RABLV genetic typing in dogs, domestic animals and wildlife, as well as continuing to educate the population on the risk of rabies transmission, prevention and responsible pet ownership. Complete elimination of canine rabies requires permanent funding, with governments and people committed to make it a reality. An accompanying article reviews the history and epidemiology of canine rabies in the Western Hemisphere, beginning with its introduction during the period of European colonization, and discusses how spillovers of viruses between dogs and various wild carnivores will affect future eradication efforts (Velasco-Villa et al., 2017)

    The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    Get PDF
    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon- binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression

    Effects of georeferencing effort on mapping monkeypox case distributions and transmission risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maps of disease occurrences and GIS-based models of disease transmission risk are increasingly common, and both rely on georeferenced diseases data. Automated methods for georeferencing disease data have been widely studied for developed countries with rich sources of geographic referenced data. However, the transferability of these methods to countries without comparable geographic reference data, particularly when working with historical disease data, has not been as widely studied. Historically, precise geographic information about where individual cases occur has been collected and stored verbally, identifying specific locations using place names. Georeferencing historic data is challenging however, because it is difficult to find appropriate geographic reference data to match the place names to. Here, we assess the degree of care and research invested in converting textual descriptions of disease occurrence locations to numerical grid coordinates (latitude and longitude). Specifically, we develop three datasets from the same, original monkeypox disease occurrence data, with varying levels of care and effort: the first based on an automated web-service, the second improving on the first by reference to additional maps and digital gazetteers, and the third improving still more based on extensive consultation of legacy surveillance records that provided considerable additional information about each case. To illustrate the implications of these seemingly subtle improvements in data quality, we develop ecological niche models and predictive maps of monkeypox transmission risk based on each of the three occurrence data sets.</p> <p>Results</p> <p>We found macrogeographic variations in ecological niche models depending on the type of georeferencing method used. Less-careful georeferencing identified much smaller areas as having potential for monkeypox transmission in the Sahel region, as well as around the rim of the Congo Basin. These results have implications for mapping efforts, as each higher level of georeferencing precision required considerably greater time investment.</p> <p>Conclusions</p> <p>The importance of careful georeferencing cannot be overlooked, despite it being a time- and labor-intensive process. Investment in archival storage of primary disease-occurrence data is merited, and improved digital gazetteers are needed to support public health mapping activities, particularly in developing countries, where maps and geographic information may be sparse.</p

    Ecology and Geography of Human Monkeypox Case Occurences Across Africa

    Get PDF
    This is the published version. The original is available from http://www.jwildlifedis.org/content/48/2/335.full.pdf+htmlAs ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping

    Genomic sequence and analysis of a vaccinia virus isolate from a patient with a smallpox vaccine-related complication

    Get PDF
    BACKGROUND: Vaccinia virus (VACV)-DUKE was isolated from a lesion on a 54 year old female who presented to a doctor at the Duke University Medical Center. She was diagnosed with progressive vaccinia and treated with vaccinia immune globulin. The availability of the VACV-DUKE genome sequence permits a first time genomic comparison of a VACV isolate associated with a smallpox vaccine complication with the sequence of culture-derived clonal isolates of the Dryvax vaccine. RESULTS: This study showed that VACV-DUKE is most similar to VACV-ACAM2000 and CLONE3, two VACV clones isolated from the Dryvax(® )vaccine stock confirming VACV-DUKE as an isolate from Dryvax(®). However, VACV-DUKE is unique because it is, to date, the only Dryvax(® )clone isolated from a patient experiencing a vaccine-associated complication. The 199,960 bp VACV-DUKE genome encodes 225 open reading frames, including 178 intact genes and 47 gene fragments. Between VACV-DUKE and the other Dryvax(® )isolates, the major genomic differences are in fragmentation of the ankyrin-like, and kelch-like genes, presence of a full-length Interferon-α/β receptor gene, and the absence of a duplication of 12 ORFs in the inverted terminal repeat. Excluding this region, the DNA sequence of VACV-DUKE differs from the other two Dryvax(® )isolates by less than 0.4%. DNA sequencing also indicated that there was little heterogeneity in the sample, supporting the hypothesis that virus from an individual lesion is clonal in origin despite the fact that the vaccine is a mixed population. CONCLUSION: Virus in lesions that result from progressive vaccinia following vaccination with Dryvax are likely clonal in origin. The genomic sequence of VACV-DUKE is overall very similar to that of Dryvax(® )cell culture-derived clonal isolates. Furthermore, with the sequences of multiple clones from Dryvax(® )we can begin to appreciate the diversity of the viral population in the smallpox vaccine

    National surveillance for human and pet contact with oral rabies vaccine baits, 2001–2009

    Get PDF
    Objective—To determine the rate and absolute number of human and pet exposures to oral rabies vaccine (ORV) bait containing liquid vaccinia rabies glycoprotein recombinant vaccine and to evaluate factors that might affect human contact with bait to modify the program and reduce human exposure to the vaccine. Design—Retrospective analysis of surveillance data (2001 to 2009). Sample—Reports on human and pet contact with ORV baits in states with ORV surveillance programs. Procedures—Data were collected from passive, multistate ORV surveillance systems in Alabama, Arizona, Florida, Georgia, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Tennessee, Texas, Vermont, Virginia, and West Virginia. Data collected included the nature of human or pet contact with bait and vaccine, the caller’s knowledge of the ORV bait program, local human population density, and other relevant demographic data. Results—All 18 states participated in the surveillance program for at least 1 year, for a combined 68 years of observation. One thousand four hundred thirty-six calls were reported, representing 3,076 found baits (6.89/100,000 baits dropped); 296 (20%) calls were related to human contact with ruptured bait, and 550 (38%) involved pet contact with the bait. Six adverse events in humans were reported, one of which required hospitalization. Fifty-nine adverse events in pets were noted, all of which were nonserious. Conclusions and Clinical Relevance—Findings from surveillance activities have been used to improve baiting strategies and minimize human and pet contact with ORV baits. Overall, human and pet contact with ORV baits was infrequent. Surveillance has led to early identification of persons exposed to ORV and rapid intervention

    Mapping Monkeypox Transmission Risk through Time and Space in the Congo Basin

    Get PDF
    Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox.This research was supported by the National Institutes of Health grant 1R01TW008859-01 ("Sylvatic Reservoirs of Human Monkeypox"). Use of trade, product, or firm names does not imply endorsement by the United States Government. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention

    Occupational Risks during a Monkeypox Outbreak, Wisconsin, 2003

    Get PDF
    Veterinary staff were at high risk; standard veterinary infection-control guidelines should be followed
    corecore