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Madrid, Spain; ‡Centers for Disease Control and Prevention, Atlanta, GA, USA; and §Department
of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK

ABSTRACT Variola virus (VARV) caused smallpox,
one of the most devastating human diseases and the
first to be eradicated, but its deliberate release repre-
sents a dangerous threat. Virulent orthopoxviruses in-
fecting humans, such as monkeypox virus (MPXV),
could fill the niche left by smallpox eradication and the
cessation of vaccination. However, immunomodulatory
activities and virulence determinants of VARV and
MPXV remain largely unexplored. We report the mo-
lecular characterization of the VARV- and MPXV-se-
creted type I interferon-binding proteins, which inter-
act with the cell surface after secretion and prevent
type I interferon responses. The proteins expressed in
the baculovirus system have been purified, and their
interferon-binding properties characterized by surface
plasmon resonance. The ability of these proteins to
inhibit a broad range of interferons was investigated to
identify potential adaptation to the human immune
system. Furthermore, we demonstrate by Western blot
and activity assays the expression of the type I inter-
feron inhibitor during VARV and MPXV infections.
These findings are relevant for the design of new
vaccines and therapeutics to smallpox and emergent
virulent orthopoxviruses because the type I interfer-
on-binding protein is a major virulence factor in
animal models, vaccination with this protein induces
protective immunity, and its neutralization prevents
disease progression.—Fernández de Marco, M. M.,
Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The
highly virulent variola and monkeypox viruses ex-
press secreted inhibitors of type I interferon. FASEB
J. 24, 1479 –1488 (2010). www.fasebj.org

Key Words: immune modulation � cytokine � infection � small-
pox � vaccine

The POXVIRIDAE are a family of large-dsDNA viruses that
replicate in the cytoplasm of infected cells. Most mem-
bers of the genera Orthopoxvirus (OPV), Parapoxvirus,
Molluscipoxvirus, and Yatapoxvirus infect humans either
exclusively, for example, variola virus (VARV) and
molluscum contagiosum virus, or zoonotically, such as
monkeypox virus (MPXV), vaccinia virus (VACV), or

Yaba-like disease virus (YLDV). The consequences of
these infections range from severe disease associated
with high mortality to more benign localized infections
such as seen with VACV infections of dairy cattle
handlers in Brazil (1). VACV was the vaccine used to
eradicate smallpox and is the prototypic member of the
poxvirus family.

Two OPVs may cause severe disease in humans.
VARV is the causative agent of smallpox, which was
declared to be eradicated in 1980 as a result of the
World Health Organization Smallpox Global Eradica-
tion Campaign, becoming the first and only viral dis-
ease eradicated by vaccination efforts (2). MPXV infects
both humans and nonhuman primates, likely has a
rodent reservoir, and is an emerging infectious disease,
with cases observed in Africa and the United States (3).
The deliberate release of VARV would have cata-
strophic consequences on global public health, consid-
ering that the majority of the human population has not
been vaccinated or boosted in recent years, so there is a
need to define the mechanisms of smallpox pathogenesis
in order to develop intervention strategies (2). In addi-
tion, the reduced level of herd immunity against OPVs
increases the possibility of infection with zoonotic OPVs,
exemplified by VACV and cowpox virus infections in
South America and Europe, respectively, and the more
virulent MPXV, endemic in Central and West Africa, and
the recent epidemic in the United States (3, 4).

Viral strategies to evade the immune response are
likely pathogenesis determinants of smallpox and mon-
keypox (5, 6) and may also modulate an immunopatho-
logical reaction responsible for the toxemia reported in
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individuals suffering from severe smallpox and the
adverse effects after smallpox vaccination (7).

The innate immune response is the first line of
immune defense. One of its main effectors are inter-
ferons (IFNs), a family of multifunctional cytokines that
are secreted from cells and inhibit virus replication via
their direct antiviral and indirect immunoregulatory
activities (8). Type I IFNs are induced by viral infection
of almost any cell type and include various IFN�
subtypes, IFN� and IFN� among others. All type I IFNs
bind to a common and widely expressed heterodimeric
receptor and induce signaling through the Janus pro-
tein tyrosine-kinase and signal transducers and activa-
tors of transcription (STAT) pathway. Type I IFNs act
by directly inducing an antiviral state in the cell (9) and
have immunoregulatory activity (10). IFN�, the only
member of type II IFNs, is induced by antigen-stimu-
lated lymphocytes and activates natural killer and cyto-
toxic T cells that destroy infected cells. Type III IFNs
(IFN�) are interleukin 10 (IL-10)-related cytokines with
antiviral activity that are produced on cell infection by
most cell types, including plasmacytoid dendritic cells
(11). Although type III IFNs bind to a unique het-
erodimeric IFN� receptor complex, they induce a type
I IFN signaling pattern (12).

The central role of IFNs in antiviral defense is
reinforced by the fact that most viruses interfere with
IFN signaling pathways at different levels (8, 13). Pox-
viruses express intracellular proteins that target this
pathway, such as the eIF-2 � homologue K3 (14) and
the double-stranded RNA-binding protein E3 (15). An
IFN evasion strategy particular to poxviruses is the
expression of secreted IFN decoy receptors, including
the IFN�/�-binding protein (IFN�/�BP) (16–19) and
IFN� receptor (20, 21), which bind IFNs with high
affinity and prevent their interaction with cellular re-
ceptors. The IFN�/�BP, encoded by the VACV strain
Western Reserve (WR) B18R gene, is an immunoglob-
ulin (Ig) superfamily glycoprotein of sequence unre-
lated to type I IFN receptors (22, 23). It is secreted from
infected cells and acts both in solution and when
associated with the cell surface, preventing the estab-
lishment of an antiviral state in surrounding uninfected
cells (17). Uniquely among IFN receptors, and indica-
tive of their potential host range, the poxvirus-encoded
IFN decoy receptors bind IFNs from a broad range of
host species (19). Deletion of the IFN�/�BP gene from
the VACV WR genome attenuates the virus in a mouse
model of infection (19, 24), and it has been recently
demonstrated that the IFN�/�BP is also essential for
ectromelia virus (ECTV) virulence and that vaccination
with the IFN�/�BP induces protective immunity (25).

In this study we demonstrate that VARV and MPXV
express a soluble IFN�/�BP, which binds to the cell
surface and protects cells from the antiviral effects of
IFN. A detailed characterization of the interaction of
the VARV and MPXV IFN�/�BPs with a broad range
of type I IFNs from different species and with type III
IFNs was carried out to identify potential differences
with VACV and adaptation to the human IFN system.

The implications of these findings for the improvement
of vaccines and therapeutics against smallpox and
emergent virulent poxviruses is discussed.

MATERIALS AND METHODS

Cells and reagents

HeLa, A549, and BSC-1 cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM) with 5–10% fetal calf
serum (FCS). Sf21 and High Five™ cells (Invitrogen, Carls-
bad, CA, USA) were grown in TC-100 medium with 10% FCS.
Vesicular stomatitis virus (VSV) strain Cocal was obtained
from W. James (Oxford University, Oxford, UK). Recombi-
nant hIFN�-G, hIFN�-J1, hIFN�-K, hIFN�-B2, hIFN�-F,
hIFN�, mIFN�-A, mIFN�, and Rhesus/cynomolgus IFN�-2
were from PBL InterferonSource (Piscataway, NJ, USA).
hIFN�-A, hIL-10, mIL-10, and mIL28A were from PeproTech
(Rocky Hill, NJ, USA). hIFN� was from Calbiochem (San
Diego, CA, USA) or PBL InterferonSource. hIFN�-2b (Intron
A) was from Schering-Plough (Kenilworth, NJ, USA). Recom-
binant hIL-28A and hIL-29 were from R&D Systems (Minne-
apolis, MN, USA).

Cloning and expression of viral IFN�/�BP

The VACV strain WR B18R, MPXV strain MSF6 B16R, and
VARV strain BSH1975 B17R genes were amplified by PCR.
MPXV and VARV template DNAs were provided by H. Meyer
(Bundeswehr Institute of Microbiology, Munich, Germany)
and the U.S. Centers for Disease Control and Prevention
(CDC; Atlanta, GA, USA), respectively. The region amplified
corresponded to the coding region without the predicted
signal peptide. PCR products were cloned into pAL7, a
modified pFastBac plasmid bearing the honeybee mellitin
signal peptide at the 5� region and a C-terminal V5-His tag.
The plasmids generated were pMF1 (VARV B17), pMF2
(VACV B18), and pMF6 (MPXV B16). The sequence of the
inserts was confirmed. The MPXV B16R gene from strain
MSF6 was identical to the sequence published for MPXV
strain Zaire 96 (26). Handling of VARV DNA was performed
under World Health Organization (WHO) permission and in
accordance with WHO guidelines. Recombinant baculovi-
ruses were obtained using the Bac to Bac system (Invitrogen).
Recombinant baculovirus expressing ECTV semaphorin ho-
mologue (SEMA) will be described elsewhere (unpublished
results).

Generation of MPXV- and VARV-infected cell supernatants

BSC-40 cells were infected with MPXV West African (MPXV
USA2003-WI-044) and Congo Basin (MPXV RCG2003-RCG-
358) strains at 10 PFU/cell in Opti-MEM (Invitrogen), and
media were harvested at 48 h postinfection. Media were
centrifuged at 1000 g for 5 min and UV inactivated. VARV
(Bangladesh 1975) infections were performed in a similar way
under BSL4 laboratory conditions, and media were collected
at 30 h postinfection. The supernatant was �-irradiated
(5�106 rad) on ice for 4 h and safety tested to demonstrate
no viral growth in 2 sequential passages. VARV reagents were
made in 2000, using a WHO-approved protocol. Supernatants
were stored at �70°C. For all samples, 1 ml of supernatant
corresponds to 	1 � 106 cells.
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Immunofluorescent cell staining

HeLa cells were incubated for 30 min at 37°C with superna-
tants from baculovirus-infected High5 cells. Unbound pro-
tein was removed with 5 washes in cold PBS, and cells were
fixed with 4% paraformaldehyde for 20 min at room temper-
ature. Immunofluorescent detection was performed without
cell membrane permeabilization using a monoclonal anti-V5
antibody (Invitrogen), followed by Alexa Fluor® 488 donkey
anti-mouse IgG (Invitrogen). Cell nuclei were stained with
DAPI (Calbiochem).

Inhibition of type I and type III IFN-induced STAT-1
phosphorylation

HeLa (for IFN type I) or A549 (for IFN type III) cells were
incubated with supernatants from baculovirus-infected cells
and thoroughly washed to remove unbound material. Subse-
quently, cells were incubated with 1000 U of IFN for 15 or 30
min at 37°C. Cells were lysed in Laemmli buffer and analyzed
by Western blot using the anti-phospho STAT1 (Tyr701) and
anti-STAT1 antibodies from Cell Signaling and anti-V5 anti-
body.

Inhibition of type I IFN-induced transcription

HeLa cells grown in 96-well plates were cotransfected using
FuGene HD (Roche) with 100 ng/well of pISRE-Luc, pCRE-
Luc, or pTAL-Luc (Mercury Pathway Profiling System; Clon-
tech, Palo Alto, CA, USA) and 5 ng/well of phRLnull
(Promega, Madison, WI, USA) plasmid bearing the Renilla
luciferase for in-well normalization of transfection efficiency.
At 24 h post-transfection, 50 U of hIFN�A was added in the
presence or absence of 20 ng of the indicated purified
recombinant proteins, and cells were incubated for 16 h.
Luciferase activity was detected using the Dual-Glo Luciferase
assay system (Promega).

Neutralization of IFN antiviral activity

Recombinant IFNs were incubated with culture supernatants
or purified proteins in 5% FCS DMEM for 30–90 min at 37°C
and added to HeLa cells grown in 96-well plates for 16 h. Cells
were then infected with 50 PFU/cell of VSV strain cocal for
48 h (16). Cell viability was determined using the Cell Titer 96
Aqueous One Solution cell proliferation assay (Promega).

Protein expression and purification

Supernatants from baculovirus-infected High5 cells were con-
centrated on a stirred ultrafiltration cell (Amicon, Danvers,
MA, USA) using YM-10 membranes (Millipore, Bedford, MA,
USA), and buffer was exchanged into binding buffer (50 mM
phosphate, 300 mM NaCl, and 10 mM imidazole, pH 7.4) on
PD-10 desalting columns (GE Healthcare, Little Chalfont,
UK). The His-tagged recombinant proteins were affinity-
purified using Ni-NTA (Qiagen, Valencia, CA) columns,
dialyzed into PBS, and concentrated using Vivaspin 500
columns (Sartorius Stedim Biotech, Aubagne, France). Pro-
tein purity was checked on Coomassie-blue-stained SDS-PAGE
and quantitated by a BCA assay (Pierce Biotechnology, Rock-
ford, IL, USA).

Biomolecular interaction analysis by SPR

Cytokine binding specificity and affinity constants were deter-
mined using a BIAcore X biosensor (BIAcore, Uppsala,

Sweden). For ligand screening experiments, purified proteins
were amine coupled to CM5 chips to 	5000 RU (5000
pg/mm2). IFNs were injected at 10 or 100 nM in HBS-EP
buffer [10 mM Hepes, 150 mM NaCl, 3 mM EDTA, and
0.005% (v/v) surfactant P20, pH 7.4] at a flow rate of 10

l/min, and association and dissociation were monitored.
The surface was regenerated using 10 mM glycine-HCl, pH
1.5. For kinetic analyses, proteins were immobilized at low
densities (Rmax�200 RU). Different concentrations of the
analyte were injected at a flow rate of 30 
l/min over 2 min
and allowed to dissociate for 3–5 min. BIAcore sensorgrams
were analyzed using BIAevaluation 3.2 software. Bulk refrac-
tive index changes were removed by subtracting the reference
flow cell responses, and the average response of a blank
injection was subtracted from all analyte sensorgrams to
remove systematic artifacts. Kinetic data were globally fitted to
a 1:1 Langmuir model.

RESULTS

VARV and MPXV encode secreted IFN�/�BPs that
bind to the cell membrane

We expressed recombinant versions of VACV WR
IFN�/�BP B18 and its orthologues VARV B17 and
MPXV B16 proteins fused to V5 and 6xHis C-terminal
tags (Supplemental Fig. 1). All 3 recombinant proteins
were secreted from baculovirus-infected insect cells
with molecular sizes of 52 kDa for VACV and MPXV
proteins or 50 kDa for the VARV protein (Supplemen-
tal Fig. 2A and Fig. 2). Cell extracts obtained in the
presence of tunicamycin, an inhibitor of N-glycosyla-
tion, showed a single band of 37 kDa in each case,
corresponding to the predicted size of the unmodified
proteins (Supplemental Fig. 2B).

VACV B18 binds to the plasma membrane of
neighboring, uninfected cells after secretion from
infected cells (17). Immunofluorescence of HeLa
cell monolayers preincubated with supernatants from
recombinant baculovirus-infected cells containing
the mentioned proteins showed an intense staining
indicative of protein binding to the cell surface for
the 3 IFN�/�BPs but not with a control secreted
protein, the SEMA encoded by ECTV (Fig. 1A).
Confocal microscopy analysis showed a clear plas-
matic membrane staining pattern for the VACV and
VARV proteins (Fig. 1B) and the MPXV protein (not
shown).

The VARV B17 and MPXV B16 proteins inhibit type I
IFN-induced signaling

To examine whether cell surface-associated proteins
prevented IFN-induced signaling, HeLa cells were
incubated with recombinant proteins and washed to
remove unbound protein. Addition of human IFN�
(hIFN�) induced STAT-1 phosphorylation in HeLa
cells preincubated with the control protein SEMA
(Fig. 2A). However, cells preincubated with either
VACV B18 protein or its VARV or MPXV orthologues
did not show STAT-1 phosphorylation, indicating
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that the 3 IFN�/�BPs block hIFN-�-induced signal-
ing. All 3 proteins, but not the control protein, were
detected by Western blot analysis, confirming their
binding to the plasma membrane. In a similar exper-
iment, neither the VACV nor its VARV or MPXV
orthologues blocked STAT-1 phosphorylation in-
duced by type III IFNs (IL-29 and IL-28A), which was
readily detected in the absence or the presence of
the viral proteins (Fig. 2B, C).

The VARV B17 and MPXV B16 proteins block the
antiviral activity of several human type I IFNs

We next determined the ability of the IFN�/�BPs
from VARV and MPXV to inhibit the antiviral activity
of different human type I IFNs: hIFN�-A, hIFN�-2b,
hIFN�-K, hIFN�-G, hIFN�-J1, hIFN�-F, hIFN�-B2,
hIFN�, and hIFN� (Fig. 3). IFN treatment completely
abrogated VSV-induced cell killing in the presence of

Figure 1. Cell surface binding of VACV IFN�/�BP and its VARV and MPXV orthologues. A) Anti-V5 immunofluorescent
staining of nonpermeabilized HeLa cells incubated with supernatants containing the indicated V5-tagged recombinant proteins.
Cell nuclei were visualized using DAPI. B) Confocal microscopy of cells incubated as before, showing plasmatic membrane
localization of the indicated proteins.

Figure 2. Inhibition of type I but not type III IFN-induced
signaling by the VACV B18 protein and its VARV and
MPXV orthologues. HeLa or A549 cells were incubated
with supernatants containing the indicated V5-tagged re-
combinant proteins and subsequently exposed to 1000 U
of hIFN� (A), hIL-29 (B), or hIL-28A (C) for the indicated
times. Samples were analyzed by Western blot using anti-
phospho-STAT-1, anti-STAT-1, and anti-V5 antibodies as
indicated. Molecular size markers (kDa) are at left.
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the control protein SEMA. By contrast, preincuba-
tion of IFNs with supernatants containing the IFN�/
�BP from VACV, VARV, or MPXV resulted in com-
plete cell death, demonstrating that all 3 proteins
inhibit the antiviral effect of all the human IFNs
tested. This effect was dose dependent for all the
IFNs tested (not shown).

Differential binding properties of the VARV B17
protein as compared to the VACV B18 protein

To further characterize the properties of VARV B17 in
vitro in comparison to VACV B18, we purified both by
affinity chromatography (Supplemental Fig. 2A). Both
proteins bound similarly to all the human type I IFNs
tested (hIFN�-A, hIFN�-2b, hIFN�-K, hIFN�-G, hIFN�-
J1, hIFN�-F, hIFN�-B2, hIFN�, and hIFN�) as well as to
Rhesus/cynomolgus IFN� (not shown), as determined
by surface plasmon resonance (SPR). Although both
proteins bound the murine IFN� (mIFN�) equally well,
the VARV B17 protein showed a much weaker binding
to mIFN�, with a very marked difference in the disso-
ciation time (Fig. 4, top panels). In addition, we tested
human and murine type III IFNs (hIL-28A, mIL-28A,
and hIL-29) as well as the more distantly related human
and murine IL-10 for binding to both proteins. Al-
though VARV B17 was not able to bind strongly to any
of these molecules, VACV B18 bound to hIL-28A,
mIL-28A, hIL-29, and mIL-10 (Fig. 4, bottom panels).
To further evaluate these differences, the binding
affinites for several of these ligands were calculated by
SPR (Table 1 and Supplemental Fig. 3). The affinites of
VARV B17 and VACV B18 for hIFN�-�, hIFN�, and
mIFN� were found to be high (ranking from 0.1 to 5
nM), and the VARV protein bound the human ligands

with 	5-fold higher affinity than the VACV orthologue.
However, although VACV B18 showed comparatively
weaker affinites (ranking from 3 to 15 nM) for mIFN�
and the type III IFNs, the VARV B17 protein showed no
detectable binding to any of these ligands under the
conditions used.

In a luciferase reporter assay, preincubation of hIFN�-A
with either VACV B18 or VARV B17 completely
abrogated the IFN-induced activation of transcrip-
tion from an IFN-stimulated response enhancer ele-
ment (Supplemental Fig. 4A). In addition, both
purified proteins blocked the antiviral activity of
all the type I hIFNs tested (hIFN�-A, hIFN�-2b,
hIFN�-K, hIFN�-G, hIFN�-J1, hIFN�-F, hIFN�-B2,
hIFN�, and hIFN�) in a dose-dependent manner
(Supplemental Fig. 4B), with the concentration of
protein needed to inhibit the IFN activity by 50%
estimated at 10–40 ng/ml for all cases (Supplemental
Fig. 4C).

An IFN inhibitory activity is secreted by MPXV- and
VARV-infected cells

To address whether an active IFN�/�BP is expressed
and secreted during MPXV or VARV infection, BSC-1
cells were infected with strains USA or RCG of MPXV or
strain BSH1975 of VARV, and supernatants were col-
lected at 48 or 30 h postinfection. Virus present in the
supernatants was inactivated to allow safe handling of
the samples. Western blot analyses using a polyclonal
anti-VACV B18 protein antibody showed a band of 	50
kDa in supernatants from cells infected with either
RCG or USA MPXV strains as well as VARV, but not in
mock-infected cells, and likely corresponds to the
MPXV B16 protein and VARV B17 protein, respectively
(Fig. 5A). Supernatants from cells infected with each
MPXV strain, but not from mock-infected cells, effi-
ciently inhibited hIFN�-2b, hIFN�-A, or hIFN�-in-
duced antiviral activity in a dose-dependent manner
(Fig. 5B). Similarly, supernatants from VARV-infected
cells contained a specific type I IFN inhibitory activity
(Fig. 5C).

DISCUSSION

Viral immunomodulatory mechanisms are key determi-
nants of pathogenesis. Currently the mechanisms of
immune evasion in VARV and MPXV are largely un-
known and mostly inferred from data from other
poxviral species. Given the relevance of both viruses as
human pathogens, it is important to study the proper-
ties of the VARV and MPXV proteins with immuno-
modulatory potential. In this report we have character-
ized the secreted type I IFN inhibitors from both viral
species, comparing their activity to their VACV ortho-
logue. Moreover, we have shown the expression of both
viral proteins during infection with VARV and MPXV in
cell culture.

The genomes of several VARV and MPXV strains

Figure 3. Inhibition of type I IFN antiviral activity by VACV
IFN�/�BP and its VARV and MPXV orthologues. Superna-
tants containing the indicated recombinant proteins were
preincubated with 50 U of each type I IFN and subsequently
added to HeLa cell monolayers. After a 16 h incubation, cells
were infected with VSV, and cell viability was determined after
48 h. Controls of nontreated, uninfected (�VSV), and in-
fected (VSV) cells are at left, separated by a dashed line.
Results are means � sd of triplicate samples from one
representative experiment.
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have been sequenced and proteins with immunomodu-
latory potential predicted. However, very few such
proteins have been characterized so far (reviewed in
refs. 27, 28). The IFN�/�BP has been shown to con-
tribute to poxvirus pathogenesis in VACV infections
(18, 19), and more recently this has been confirmed
using the mousepox model, considered the best surro-
gate mouse model for human smallpox. In the absence
of the ECTV IFN�/�BP, the LD50 in susceptible mice
was raised �107-fold, and this attenuation was accom-
panied by an increased innate and adaptive immune

response (25). Therefore, it is reasonable to speculate
that the VARV and MPXV IFN�/�BPs may play a role
in pathogenesis. A rapid activation of IFN-associated
genes was observed in peripheral blood mononuclear
cells from VARV-infected cynomolgus macaques (29).
In addition, the inability to induce a strong IFN re-
sponse appeared to correlate with more severe disease.
This is consistent with the hypothesis that VARV regu-
lation of IFN responses is a key determinant of small-
pox pathogenesis. Here we demonstrate that VARV B17
is expressed and active as a type I IFN inhibitor during

Figure 4. Differential binding of VACV B18 and VARV B17 to human and murine IFNs. Purified recombinant VACV B18
or VARV B17 were coupled to a sensor chip and screened for interactions with the indicated molecules by SPR. Top panels:
binding curves of each protein to indicated human and murine type I IFNs. Bottom panels: binding curves of each protein
to human and murine type III IFNs and the related human and murine IL-10. Curves correspond to injections of 10 nM
hIFN�-A, 10 nM hIFN�, 10 nM mIFN�, and 100 nM of all other analytes. All curves are normalized to an arbitrary value
of 100 RU for comparative purposes; hIFN�-A curve is shown as a reference. Data correspond to one representative
experiment.

TABLE 1. Comparison of kinetic parameters and derived affinity constants for the binding of VACV IFN type I binding protein and its
VARV orthologue to IFNs

IFN

VACV B18 VARV B17

ka (M�1s�1) kd (s�1) Kd (M) ka (M�1s�1) kd (s�1) Kd (M)

hIFN� 3.89 � 105 2.25 � 10�4 5.8 � 10�10 1.22 � 106 1.32 � 10�4 1.08 � 10�10

hIFN� 5.98 � 105 3.16 � 10�4 5.28 � 10�9 2.52 � 105 3.13 � 10�4 1.24 � 10�9

mIFN� 1.72 � 106 7.84 � 10�4 4.55 � 10�10 1.34 � 106 3.84 � 10�4 2.6 � 10�10

mIFN� 1.04 � 105 3.33 � 10�4 3.2 � 10�9 – – –
hIL28A 2.45 � 105 3.64 � 10�3 1.49 � 10�8 – – –
hIL29 1.93 � 105 2.6 � 10�3 1.35 � 10�8 – – –
mIL28A 8.32 � 105 1.12 � 10�2 1.34 � 10�8 – – –
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infection. To our knowledge, this is the first demonstra-
tion of expression and activity of a native-secreted
immunomodulatory VARV protein. Similarly, we have
shown expression of the active protein in both RCG
and USA strains of MPXV during infection in cell
culture. However, we cannot formally rule out the
possibility that VARV or MPXV may encode additional
secreted antitype I IFN activity distinct from the IFN�/
�BP characterized in this report. Previously, transcrip-
tion of the B16R gene from MPXV strain Zaire96 was
described to occur early during tissue culture infection,
but protein expression was not reported (30). Note that
orthologues of both intracellular poxviral IFN-resis-
tance proteins E3 and K3 are present in VARV but
truncated or absent in MPXV (28). This may make
MPXV far more reliant for the control of the host’s
immune response on the secreted type I IFN inhibitor
than other poxviruses.

VACV B18 is a decoy-type I IFN receptor with broad
species specificity and blocks the antiviral activity of
human IFN�1, IFN�2, IFN�7, IFN�8, IFN�, IFN�,
IFN�, and IFNε (18, 19, 31). Our results show that the
VARV and MPXV orthologues block the antiviral activ-
ity of 8 different human type I IFNs, with an inhibitory
profile similar to that of the VACV protein. In addition,
both the VARV and MPXV proteins block monkey IFN
activity, indicating that its activity should be evident in
the macaque model of infection.

A unique property of VACV B18 is its ability to bind

to the cell surface and prevent IFN signaling at this
location (17, 18). It was suggested that secretion is the
best way to transport this protein to uninfected cells to
coat a surrounding uninfected tissue, which would be
its most relevant site of action physiologically. We show
that this property is shared by the VARV and MPXV
IFN�/�BPs. Interestingly, the more distantly related
secreted IFN inhibitor protein from the yatapoxvirus
YLDV also binds to the cell surface (31).

The antiviral activity of type III IFN is restricted to
viruses that enter through epithelia, such as those
lining the lung (32). Type III IFN impairs VACV
replication in vivo (33) and, more importantly, the
YLDV orthologue of VACV B18 inhibits human type III
IFN activity in cell culture (31). Because VARV and
MPXV enter their host mainly through the respiratory
system, it was important to determine whether the
VARV or MPXV IFN�/�BP may also block type III IFN
signaling. As shown before (31), we found that the
VACV protein does not block type III IFN-induced
signaling. Similarly, neither its MPXV nor its VARV
orthologues blocked type III IFN activity. The impor-
tance of type III IFN in response against human poxvi-
ral infections is not known. YLDV is a primate virus that
can be transmitted to humans causing a mild illness
clearly distinct from monkeypox and smallpox, and
perhaps type III IFN is more important in the local
control of yatapoxvirus infections. Alternatively, other
OPVs may encode different secreted immunomodula-

Figure 5. Expression and activity of the IFN�/�BP in supernatants from MPXV- or VARV-infected cells. A) Supernatants
from VACV-, MPXV-, or VARV-infected cells were analyzed by Western blot using an anti-B18 protein antibody along with
negative (media) and purified recombinant B18 protein (VACV B18) as indicated. B, C) Increasing amounts of
supernatants from MPXV strain USA- or RCG-infected cells (B) or VARV strain BSH75 X or mock-infected cells (media)
(C) were preincubated with either 5 or 50 U of type I hIFNs as indicated and added to HeLa cell monolayers for 16 h. As
a control, 10 ng of purified VACV B18 protein was preincubated with IFN and added to HeLa cell monolayers as before.
Cells were infected with VSV, and cell viability was determined after 48 h. Controls of nontreated, uninfected (�VSV) and
infected (VSV) cells were included in each case. Results are means � sd of triplicate samples from one representative
experiment.
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tors targeting type III IFNs. It is also conceivable that
the intracellular blockade of type I IFN-induced re-
sponses mediated by E3L, K3L, and the VH1 phospha-
tase (34) is also efficient against type III IFN signaling
and sufficient to prevent its antiviral activity in vivo.
Surprisingly, we found that the VACV, but not the
VARV IFN�/�BP, did bind human and murine type III
IFNs. The inability of this protein to block their activity
may be due to its relatively low binding affinity. This
lower affinity or the nature of the recombinant proteins
used may be the reason why Huang et al. (31) did not
detect this interaction. However, this finding has im-
portant consequences for structure-function studies,
especially for the determination of the motifs involved
in type I vs. type III IFN binding in poxviral orthologues
of VACV B18.

To study the potential adaptation of the VARV
IFN�/�BP to its human host, we compared the binding
and specific activity of the purified protein with those of
VACV B18. The binding affinites of VARV B17 for
hIFN�-A and hIFN� were slightly better (5-fold higher)
than those of VACV B18. Although the specific activity
of both proteins in IFN� and IFN� inhibition assays
in vitro did not show major differences, a potential
advantage in vivo in the human host cannot be ex-
cluded. Interestingly, while VARV B17 binds mIFN�
with an affinity comparable to that of VACV B18, it has
lost the capacity to bind murine IFN� as well as type III
IFNs and IL-10. It should be noted that binding of
VACV B18 to these cytokines does not block their
activity (refs. 16, 31 and the present study) and is
therefore probably not relevant in vivo. It is surprising
that the OPV IFN�/�BPs have lost the ability to block
mIFN� activity while retaining hIFN�-inhibitory activity
since IFN�-deficient mice are more susceptible to
VACV (35).

Apparent adaptation of poxvirus immunomodula-
tory proteins to their specific hosts has been shown
for the smallpox inhibitor of complement enzyme
(SPICE), a VARV orthologue of the VACV comple-
ment control protein, which contributes to patho-
genesis in vivo. SPICE is a highly specific and potent
inhibitor of human complement as compared to the
VACV protein (36). This enhanced function against
human complement has been ascribed to 4 amino
acid changes (37), illustrating that adaptation to the
human host may not require many mutations. How-
ever, the VARV immunomodulators studied to date
do not necessarily have higher affinities for their
human ligands. Thus, the VARV IL-18BP showed
similar affinities for its human and murine ligand
(38), while VARV CrmB is a better inhibitor of
murine than human tumor necrosis factor (39). This
suggests the relative importance of the binding affin-
ities of various virally encoded immune response
modifiers for various human immune effectors in the
maintenance of VARV in a human host system and
perhaps indicates that VARV has only recently (in
evolutionary time) adapted to a human host. Yata-
poxviruses, on the contrary, show a marked species

specificity in their secreted receptors for TNF and
IFN (31, 40).

Because of the risk of emerging OPV infections
and weaponization, and because the live VACV-based
vaccine is contraindicated for portions of the global
population, there is a considerable interest in devel-
oping novel anti-OPV vaccines (41, 42). It was previ-
ously shown that monoclonal antibodies against the
secreted VACV/VARV growth factor could enhance
protective immunity in a VACV intranasal mouse
model of infection (43), which led the authors to
propose that blockade of secreted viral immuno-
modulators represents an alternative to the tradi-
tional approach that prevents infection by virus
neutralization. The IFN�/�BP encoded by ECTV,
with properties similar to those of VARV and MPXV
(16), has been shown to be a major contributor to
virus virulence in mousepox (25), considered one of
the best mouse models of human smallpox. The
unprecedented attenuation of an ECTV mutant in
the IFN�/�BP gene, with an increase of more than
107-fold in the LD50, clearly demonstrated that viru-
lent OPVs require this protein to establish a small-
pox-like disease and strongly suggested that neutral-
ization of this viral IFN inhibitor is a therapeutic
strategy to control disease severity. Consistent with
this, vaccination with recombinant ECTV IFN�/�BP
could effectively prevent fatal mousepox (25).

Our demonstration that the IFN�/�BP is actively
expressed by cells infected with VARV and MPXV
identifies this viral immunomodulatory protein as
both a component of a protective vaccine and a
target for therapeutics against virulent human pox-
viruses. Subunit vaccines against poxviruses are com-
posed of structural proteins present in the virus
particle and neutralize the infectivity of the virions,
and the inclusion of viral-secreted virulence factors
may serve as a complementary approach (25, 43). It
should be noted that the smallpox vaccines Dryvax
and modified virus Ankara encode truncated versions
of the IFN�/�BP, which in the case of vaccinia virus
Dryvax has been shown to be expressed and to bind
IFN with 70-fold lower affinity than the full-length
protein (17, 44). The inclusion of full-length IFN�/
�BP, or, even better, a mutagenized version of the
protein lacking IFN-binding activity, in the current
smallpox vaccines may induce better anti-IFN�/�BP
response and enhance their protective effect. In
addition, monoclonal antibodies against the MPXV
or VARV proteins could be helpful as a phamacologi-
cal compound in exposed individuals to prevent
disease in human monkeypox and smallpox cases.
This would represent an alternative to the large
proportion of individuals at high risk of serious
adverse effects when receiving smallpox vaccination,
due to immune deficiency, atopic dermatitis, or at
the extremes of age (45).

In summary, we report the expression of an active
IFN�/�BP by VARV and MPXV, and the characteriza-
tion of their binding properties against a broad range
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of IFNs. This is the first demonstration of the expres-
sion of a soluble cytokine binding protein by VARV.
The critical role of the IFN�/�BP in the pathogenesis
of virulent poxviruses (25) emphasizes the relevance of
these findings to understand the mechanisms of patho-
genesis of smallpox and monkeypox. Furthermore, our
findings identify the VARV and MPXV IFN�/�BPs as a
target for vaccination and therapeutic treatment of
infected individuals.
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SUPPLEMENTAL FIGURE LEGENDS 

 

Supportive information figure 1. Sequence alignement of B18 from VACV strain WR 

(GenBank accession number:  YP_233082) with its VARV strain Bangladesh 1975 

(B17R, GenBank accession number AAA60926) and MPXV strain Zaire_1979-005 

(B16R, GenBank accession number: AAY97385) orthologues. Sequence alignments 

were performed with CLUSTALW at (www.ebi.ac.uk) and shaded using BOXSHADE 

(http://bioweb.pasteur.fr/seqanal/interfaces/boxshade.html). Positions presenting 

conservative changes are shaded in grey and non-conservative changes are shown in 

white letters on black background. Numbering for each protein is shown. The predicted 

signal peptide is indicated (SP) and Ig domains 1 to 3 for VACV B18 are delimited by 

bent arrows. Both VARV and MPXV encode orthologues of the VACV, encoded by 

genes B17R in VARV (94% amino acid identity) and B16R in MPXV (89.2% amino 

acid identity). The VARV B17 and MPXV B16 proteins are 85.6% identical. Most of 

these amino acid changes are concentrated in the N-terminal half of the protein, with 17 

variable positions located in the first Ig-like domain.  The VARV orthologue is 

predicted to have an extended N-terminus that would be included within the early 

mRNA mapped in VACV WR.  

 

Supportive information figure 2. A. Different amounts of purified recombinant VACV 

B18 and VARV B17 proteins were separated by SDS-PAGE alongside known amounts 

of BSA and stained with Coomassie-blue. B. Expression and N-glycosilation of VACV 

IFN type I BP and its VARV and MPXV orthologues. High5 cells were not infected (-) 

or infected with baculoviruses bearing the genes for the indicated proteins in the 

absence (-) or the presence (+) of the N-glycosilation inhibitor tunicamycin. After 48 



 2 

hours, the cells were harvested and samples were lysed and analysed by western blot 

using an anti-V5 antibody. MWM in kDa are shown on the left. 

 

Supportive information figure 3. Fittings used for the determination of kinetic binding 

parameters of VACV B18 (A and C) and VARV IFN type I BP (B) for the different 

IFNs. In each plot, the analyte is shown on the top left. The number of curves used, and 

the range of concentrations in nM for each analyte are shown in brackets in the bottom 

right of each panel. 

 

Supportive information figure 4. Inhibition of type I IFN by purified recombinant 

VACV and VARV IFNα/βBPs. A. Fold luciferase activity activation of HeLa cells 

transfected with the indicated plasmids and stimulated with 1000U of hIFNα-A which 

had been preincubated or not with purified recombinant VACV B18 or VARV B17, as 

shown. Cells were cotransfected with phRL-null to allow for normalization of 

transfection efficiency. Fold activation was calculated in relationship to transfected, 

unstimulated cells. Means of triplicate samples from one representative experiment out 

of three are shown. B. Inhibition of IFN type I antiviral activity by purified recombinant 

VACV B18 or VARV IFN type I BP. 50U of the indicated hIFNs were preincubated 

with 20ng of each recombinant protein or not (- protein) and added to HeLa cell 

monolayers for 16 hours. After this period, the cells were infected with VSV and cell 

viability was determined after 48 hours. Shown are means of triplicate samples from 

one representative experiment out of three. C. Dose-dependent inhibition of type I IFN 

antiviral activity by purified recombinant VACV B18 or VARV B17. Experiments were 

performed using 50U of the indicated hIFN and increasing amounts of purified protein. 

Mean ± SD of triplicates for each sample are shown. 
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