25 research outputs found

    Identification and evaluation of novel prognostic genetic markers for childhood acute lymphoblastic leukemia

    Get PDF
    Childhood acute lymphoblastic leukemia (ALL) is the most common form of childhood cancer today. Due to advances in risk stratification and treatment, survival rates have increased drastically the last decades. Currently, children with acute leukemia in the Nordic countries are diagnosed and treated according to the NOPHO-2008 treatment protocol. In this protocol, a number of cytogenetic markers are used for risk stratification and guidance of treatment intensity. However, genetic markers associated with high risk are infrequent and relapses occur across all genetic subtypes, including those associated with a favorable outcome. Importantly, over 25% of childhood ALL cases harbor none of the currently used genetic risk markers in their bone marrow cells at diagnosis. The aim of this thesis was to generate a greater understanding of the genetic landscape in ALL, as well as to identify novel genetic markers of prognostic relevance, with special focus on the group of patients lacking risk-stratifying markers. In paper I, we investigated the frequency and prognostic impact of IKZF1 deletions in patients diagnosed with B-cell precursor (BCP) ALL in the Stockholm region; IKZF1 deletions were present in 15% of cases and significantly associated with inferior outcome. These results led to paper II, where the cohort was extended to include BCP ALL cases with available IKZF1 data from other centers in Sweden. This study verified that IKZF1 deletion was an independent risk factor for decreased survival, and could confirm that the frequency and prognostic effect was most pronounced in patients without risk-stratifying markers. A high frequency of IKZF1 deletions could also be detected in paper III, where we investigated the genetic copy number landscape of BCP ALL across the different cytogenetic subtypes. This study showed that a majority of cases without risk-stratifying markers harbor deletions with potential prognostic significance, suggesting that a large proportion of this group could be assigned to distinct genetic subtypes. Intrachromosomal amplification of chromosome 21 (iAMP21) is an intermediate/high-risk subtype for which the biological cause of the high relapse risk is unknown. In paper IV, we used an integrated molecular approach to investigate the iAMP21 subtype, and identified significant overexpression of tree potential candidate genes, i.e. DYRK1A, SON and CHAF1B, with leukemia-relevant functions that could represent future targets for therapy. Together, these studies have identified a number of potential novel prognostic genetic markers that may contribute to the clinical risk-evaluation of children diagnosed with BCP ALL, and to our understanding of the biology behind relapse and poor outcome in this disease

    DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA methylation as a complement to current diagnostic methods. A secondary aim was to gain insight into the functional role of DNA methylation in ALL.We used the methylation status of ~450,000 CpG sites in 546 well-characterized patients with T-ALL or seven recurrent B-cell precursor ALL subtypes to design and validate sensitive and accurate DNA methylation classifiers. After repeated cross-validation, a final classifier was derived that consisted of only 246 CpG sites. The mean sensitivity and specificity of the classifier across the known subtypes was 0.90 and 0.99, respectively. We then used DNA methylation classification to screen for subtype membership of 210 patients with undefined karyotype (normal or no result) or non-recurrent cytogenetic aberrations ('other' subtype). Nearly half (n = 106) of the patients lacking cytogenetic subgrouping displayed highly similar methylation profiles as the patients in the known recurrent groups. We verified the subtype of 20% of the newly classified patients by examination of diagnostic karyotypes, array-based copy number analysis, and detection of fusion genes by quantitative polymerase chain reaction (PCR) and RNA-sequencing (RNA-seq). Using RNA-seq data from ALL patients where cytogenetic subtype and DNA methylation classification did not agree, we discovered several novel fusion genes involving ETV6, RUNX1, and PAX5.Our findings indicate that DNA methylation profiling contributes to the clarification of the heterogeneity in cytogenetically undefined ALL patient groups and could be implemented as a complementary method for diagnosis of ALL. The results of our study provide clues to the origin and development of leukemic transformation. The methylation status of the CpG sites constituting the classifiers also highlight relevant biological characteristics in otherwise unclassified ALL patients.Swedish Foundation for Strategic Research RBc08-008 Swedish Cancer Society CAN2010/592 Swedish Childhood Cancer Foundation 11098 Swedish Research Council for Science and Technology 90559401 Swedish Research Council FORTE Swedish Research Council FORMAS Swedish Research Council VINNOVA Swedish Research Council VR 259-2012-2

    Feasibility to use whole-genome sequencing as a sole diagnostic method to detect genomic aberrations in pediatric B-cell acute lymphoblastic leukemia

    Get PDF
    IntroductionThe suitability of whole-genome sequencing (WGS) as the sole method to detect clinically relevant genomic aberrations in B-cell acute lymphoblastic leukemia (ALL) was investigated with the aim of replacing current diagnostic methods.MethodsFor this purpose, we assessed the analytical performance of 150 bp paired-end WGS (90x leukemia/30x germline). A set of 88 retrospective B-cell ALL samples were selected to represent established ALL subgroups as well as ALL lacking stratifying markers by standard-of-care (SoC), so-called B-other ALL.ResultsBoth the analysis of paired leukemia/germline (L/N)(n=64) as well as leukemia-only (L-only)(n=88) detected all types of aberrations mandatory in the current ALLTogether trial protocol, i.e., aneuploidies, structural variants, and focal copy-number aberrations. Moreover, comparison to SoC revealed 100% concordance and that all patients had been assigned to the correct genetic subgroup using both approaches. Notably, WGS could allocate 35 out of 39 B-other ALL samples to one of the emerging genetic subgroups considered in the most recent classifications of ALL. We further investigated the impact of high (90x; n=58) vs low (30x; n=30) coverage on the diagnostic yield and observed an equally perfect concordance with SoC; low coverage detected all relevant lesions.DiscussionThe filtration of the WGS findings with a short list of genes recurrently rearranged in ALL was instrumental to extract the clinically relevant information efficiently. Nonetheless, the detection of DUX4 rearrangements required an additional customized analysis, due to multiple copies of this gene embedded in the highly repetitive D4Z4 region. We conclude that the diagnostic performance of WGS as the standalone method was remarkable and allowed detection of all clinically relevant genomic events in the diagnostic setting of B-cell ALL

    Validation of the United Kingdom copy-number alteration classifier in 3239 children with B-cell precursor ALL

    Get PDF
    Genetic abnormalities provide vital diagnostic and prognostic information in pediatric acute lymphoblastic leukemia (ALL) and are increasingly used to assign patients to risk groups. We recently proposed a novel classifier based on the copy-number alteration (CNA) profile of the 8 most commonly deleted genes in B-cell precursor ALL. This classifier defined 3 CNA subgroups in consecutive UK trials and was able to discriminate patients with intermediate-risk cytogenetics. In this study, we sought to validate the United Kingdom ALL (UKALL)-CNA classifier and reevaluate the interaction with cytogenetic risk groups using individual patient data from 3239 cases collected from 12 groups within the International BFM Study Group. The classifier was validated and defined 3 risk groups with distinct event-free survival (EFS) rates: good (88%), intermediate (76%), and poor (68%) (P < .001). There was no evidence of heterogeneity, even within trials that used minimal residual disease to guide therapy. By integrating CNA and cytogenetic data, we replicated our original key observation that patients with intermediate-risk cytogenetics can be stratified into 2 prognostic subgroups. Group A had an EFS rate of 86% (similar to patients with good-risk cytogenetics), while group B patients had a significantly inferior rate (73%, P < .001). Finally, we revised the overall genetic classification by defining 4 risk groups with distinct EFS rates: very good (91%), good (81%), intermediate (73%), and poor (54%), P < .001. In conclusion, the UKALL-CNA classifier is a robust prognostic tool that can be deployed in different trial settings and used to refine established cytogenetic risk groups

    The prognostic impact of IKZF1 deletions and UKALL genetic classifiers in paediatric B-cell precursor acute lymphoblastic leukaemia treated according to NOPHO 2008 protocols

    No full text
    We investigated 390 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) patients treated according to NOPHO ALL 2008, regarding copy number alterations (CNA) of eight loci associated with adverse prognosis, including IKZF1. The impact on outcome was investigated for each locus individually, combined as CNA profiles and together with cytogenetic information. The presence of IKZF1 deletion or a poor-risk CNA profile was associated with poor outcome in the whole cohort. In the standard-risk group, IKZF1-deleted cases had an inferior probability of relapse-free survival (pRFS) (p ≤ 0.001) and overall survival (pOS) (p ≤ 0.001). Additionally, among B-other patients, IKZF1 deletion correlated with poor pRFS (60% vs. 90%) and pOS (65% vs. 89%). Both IKZF1 deletion and a poor-risk CNA profile were independent factors for relapse and death in multivariable analyses adjusting for known risk factors including measurable residual disease. Our data indicate that BCP-ALL patients with high-risk CNA or IKZF1 deletion have worse prognosis despite otherwise low-risk features. Conversely, patients with both a good CNA and cytogenetic profile had a superior relapse-free (p ≤ 0.001) and overall survival (p ≤ 0.001) in the cohort, across all risk groups. Taken together, our findings highlight the potential of CNA assessment to refine stratification in ALL

    Detailed gene dose analysis reveals recurrent focal gene deletions in pediatric B-cell precursor acute lymphoblastic leukemia

    No full text
    To identify copy number alterations (CNAs) in pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL), array comparative genomic hybridization was performed on 50 cases; detected CNAs were validated in a cohort of 191 cases analyzed by single nucleotide polymorphism arrays. Apart from CNAs involving leukemia-associated genes, recurrent deletions targeting genes not previously implicated in BCP ALL, e.g. INIP, IRF1 and PDE4B, were identified. Deletions of the DNA repair gene INIP were exclusively found in cases with t(12;21), and deletions of SH2B3 were associated with intrachromosomal amplification of chromosome 21 (

    High-resolution detection of chromosomal rearrangements in leukemias through mate pair whole genome sequencing

    No full text
    <div><p>The detection of recurrent somatic chromosomal rearrangements is standard of care for most leukemia types. Even though karyotype analysis—a low-resolution genome-wide chromosome analysis—is still the gold standard, it often needs to be complemented with other methods to increase resolution. To evaluate the feasibility and applicability of mate pair whole genome sequencing (MP-WGS) to detect structural chromosomal rearrangements in the diagnostic setting, we sequenced ten bone marrow samples from leukemia patients with recurrent rearrangements. Samples were selected based on cytogenetic and FISH results at leukemia diagnosis to include common rearrangements of prognostic relevance. Using MP-WGS and in-house bioinformatic analysis all sought rearrangements were successfully detected. In addition, unexpected complexity or additional, previously undetected rearrangements was unraveled in three samples. Finally, the MP-WGS analysis pinpointed the location of chromosome junctions at high resolution and we were able to identify the exact exons involved in the resulting fusion genes in all samples and the specific junction at the nucleotide level in half of the samples. The results show that our approach combines the screening character from karyotype analysis with the specificity and resolution of cytogenetic and molecular methods. As a result of the straightforward analysis and high-resolution detection of clinically relevant rearrangements, we conclude that MP-WGS is a feasible method for routine leukemia diagnostics of structural chromosomal rearrangements.</p></div

    High-resolution detection of chromosomal rearrangements in leukemias through mate pair whole genome sequencing - Fig 2

    No full text
    <p><b>(a) Graphic representation of MP-WGS events in ALL1.</b> Circos plot representing unique events detected by MP-WGS in ALL1 and graphic representation of <i>TCF3</i> (green) and <i>PBX1</i> (red) gene structure and the mate pair reads supporting the link between both genes. The red line in circos plot represents the event between <i>PBX1</i> (1q23) and <i>TCF3</i> (19p13.3). (<b>b)</b> Junction sequence of ALL1 Sanger sequence showing the 11 base-pair insertion at the junction between <i>TCF3</i> (green) and <i>PBX1</i> (red). <b>(c)</b> Circos plots of the remaining samples. Red lines: Unique events previously detected by FISH and/or karyotyping and novel unique events validated with Sanger; Gray lines: Unique events not further investigated.</p
    corecore