9 research outputs found

    Basosquamous Basal Cell Carcinoma with Bone Marrow Metastasis

    Get PDF
    Basal cell carcinoma (BCC) is the most common cancer in Caucasians. It is slow growing and rarely metastasizes. If left untreated over time, invasive growth can occur. We present a patient case with a primary BCC located in the right sub-mammary area, with extensive metastases to the skeleton and bone marrow. Histopathological examination of the tumour showed BCC with a diverse growth pattern. There were no signs of local metastases. Surgery was successfully performed. Three months post-surgery the patient developed normocytic anaemia and elevated inflammation markers. [18F]FDG PET/CT showed extensive FDG uptake in the entire skeleton and bone marrow. Biopsy confirmed the infiltration of BCC with similar histopathological features as the primary tumour. Prognosis of metastasized BCC is poor and, therefore, long-term follow-up of patients with risk factors is of importance.publishedVersio

    Ammonia-oxidizing archaea have similar power requirements in diverse marine oxic sediments

    Get PDF
    Energy/power availability is regarded as one of the ultimate controlling factors of microbial abundance in the deep biosphere, where fewer cells are found in habitats of lower energy availability. A critical assumption driving the proportional relationship between total cell abundance and power availability is that the cell-specific power requirement keeps constant or varies over smaller ranges than other variables, which has yet to be validated. Here we present a quantitative framework to determine the cell-specific power requirement of the omnipresent ammonia-oxidizing archaea (AOA) in eight sediment cores with 3–4 orders of magnitude variations of organic matter flux and oxygen penetration depth. Our results show that despite the six orders of magnitude variations in the rates and power supply of nitrification and AOA abundances across these eight cores, the cell-specific power requirement of AOA from different cores and depths overlaps within the narrow range of 10−19–10−17 W cell−1, where the lower end may represent the basal power requirement of microorganisms persisting in subseafloor sediments. In individual cores, AOA also exhibit similar cell-specific power requirements, regardless of the AOA population size or sediment depth/age. Such quantitative insights establish a relationship between the power supply and the total abundance of AOA, and therefore lay a foundation for a first-order estimate of the standing stock of AOA in global marine oxic sediments.publishedVersio

    Basosquamous Basal Cell Carcinoma with Bone Marrow Metastasis

    No full text
    Basal cell carcinoma (BCC) is the most common cancer in Caucasians. It is slow growing and rarely metastasizes. If left untreated over time, invasive growth can occur. We present a patient case with a primary BCC located in the right sub-mammary area, with extensive metastases to the skeleton and bone marrow. Histopathological examination of the tumour showed BCC with a diverse growth pattern. There were no signs of local metastases. Surgery was successfully performed. Three months post-surgery the patient developed normocytic anaemia and elevated inflammation markers. [18F]FDG PET/CT showed extensive FDG uptake in the entire skeleton and bone marrow. Biopsy confirmed the infiltration of BCC with similar histopathological features as the primary tumour. Prognosis of metastasized BCC is poor and, therefore, long-term follow-up of patients with risk factors is of importance

    Ammonia-oxidizing archaea have similar power requirements in diverse marine oxic sediments

    No full text
    Energy/power availability is regarded as one of the ultimate controlling factors of microbial abundance in the deep biosphere, where fewer cells are found in habitats of lower energy availability. A critical assumption driving the proportional relationship between total cell abundance and power availability is that the cell-specific power requirement keeps constant or varies over smaller ranges than other variables, which has yet to be validated. Here we present a quantitative framework to determine the cell-specific power requirement of the omnipresent ammonia-oxidizing archaea (AOA) in eight sediment cores with 3–4 orders of magnitude variations of organic matter flux and oxygen penetration depth. Our results show that despite the six orders of magnitude variations in the rates and power supply of nitrification and AOA abundances across these eight cores, the cell-specific power requirement of AOA from different cores and depths overlaps within the narrow range of 10−19–10−17 W cell−1, where the lower end may represent the basal power requirement of microorganisms persisting in subseafloor sediments. In individual cores, AOA also exhibit similar cell-specific power requirements, regardless of the AOA population size or sediment depth/age. Such quantitative insights establish a relationship between the power supply and the total abundance of AOA, and therefore lay a foundation for a first-order estimate of the standing stock of AOA in global marine oxic sediments

    The Seven Sisters Hydrothermal System: First Record of Shallow Hybrid Mineralization Hosted in Mafic Volcaniclasts on the Arctic Mid-Ocean Ridge

    Get PDF
    We document the discovery of an active, shallow, seafloor hydrothermal system (known as the Seven Sisters Vent Field) hosted in mafic volcaniclasts at a mid-ocean ridge setting. The vent field is located at the southern part of the Arctic mid-ocean ridge where it lies on top of a flat-topped volcano at ~130 m depth. Up to 200 °C phase-separating fluids vent from summit depressions in the volcano, and from pinnacle-like edifices on top of large hydrothermal mounds. The hydrothermal mineralization at Seven Sisters manifests as a replacement of mafic volcaniclasts, as direct intraclast precipitation from the hydrothermal fluid, and as elemental sulfur deposition within orifices. Barite is ubiquitous, and is sequentially replaced by pyrite, which is the first sulfide to form, followed by Zn-Cu-Pb-Ag bearing sulfides, sulfosalts, and silica. The mineralized rocks at Seven Sisters contain highly anomalous concentrations of ‘epithermal suite’ elements such as Tl, As, Sb and Hg, with secondary alteration assemblages including silica and dickite. Vent fluids have a pH of ~5 and are Ba and metal depleted. Relatively high dissolved Si (~7.6 mmol/L Si) combined with low (0.2–0.4) Fe/Mn suggest high-temperature reactions at ~150 bar. A δ13C value of −5.4‰ in CO2 dominated fluids denotes magmatic degassing from a relatively undegassed reservoir. Furthermore, low CH4 and H2 (<0.026 mmol/kg and <0.009 mmol/kg, respectively) and 3He/4He of ~8.3 R/Racorr support a MORB-like, sediment-free fluid signature from an upper mantle source. Sulfide and secondary alteration mineralogy, fluid and gas chemistry, as well as δ34S and 87Sr/86Sr values in barite and pyrite indicate that mineralization at Seven Sisters is sustained by the input of magmatic fluids with minimal seawater contribution. 226Ra/Ba radiometric dating of the barite suggests that this hydrothermal system has been active for at least 4670 ± 60 yr

    DataSheet_2_Hydrothermal activity fuels microbial sulfate reduction in deep and distal marine settings along the Arctic Mid Ocean Ridges.xlsx

    No full text
    Microbial sulfate reduction is generally limited in the deep sea compared to shallower marine environments, but cold seeps and hydrothermal systems are considered an exception. Here, we report sulfate reduction rates and geochemical data from marine sediments and hydrothermal vent fields along the Arctic Mid Ocean Ridges (AMOR), to assess the significance of basalt-hosted hydrothermal activity on sulfate reduction in a distal deep marine setting. We find that cored marine sediments do not display evidence for sulfate reduction, apart from low rates in sediments from the Knipovich Ridge. This likely reflects the overall limited availability of reactive organic matter and low sedimentation rates along the AMOR, except for areas in the vicinity of Svalbard and Bear Island. In contrast, hydrothermal samples from the Seven Sisters, Jan Mayen and Loki’s Castle vent fields all demonstrate active microbial sulfate reduction. Rates increase from a few 10s to 100s of pmol SO42- cm-3 d-1 in active high-temperature hydrothermal chimneys, to 10s of nmol SO42- cm-3 d-1 in low-temperature barite chimneys and up to 110 nmol cm-3 d-1 in diffuse venting hydrothermal sediments in the Barite field at Loki’s Castle. Pore fluid and sediment geochemical data suggest that these high rates are sustained by organic compounds from microbial mats and vent fauna as well as methane supplied by high-temperature hydrothermal fluids. However, significant variation was observed between replicate hydrothermal samples and observation of high rates in seemingly inactive barite chimneys suggests that other electron donors may be important as well. Sediment sulfur isotope signatures concur with measured rates in the Barite field and indicate that microbial sulfate reduction has occurred in the hydrothermal sediments since the recent geological past. Our findings indicate that basalt-hosted vent fields provide sufficient electron donors to support microbial sulfate reduction in high- and low-temperature hydrothermal areas in settings that otherwise show very low sulfate reduction rates.</p

    DataSheet_1_Hydrothermal activity fuels microbial sulfate reduction in deep and distal marine settings along the Arctic Mid Ocean Ridges.docx

    No full text
    Microbial sulfate reduction is generally limited in the deep sea compared to shallower marine environments, but cold seeps and hydrothermal systems are considered an exception. Here, we report sulfate reduction rates and geochemical data from marine sediments and hydrothermal vent fields along the Arctic Mid Ocean Ridges (AMOR), to assess the significance of basalt-hosted hydrothermal activity on sulfate reduction in a distal deep marine setting. We find that cored marine sediments do not display evidence for sulfate reduction, apart from low rates in sediments from the Knipovich Ridge. This likely reflects the overall limited availability of reactive organic matter and low sedimentation rates along the AMOR, except for areas in the vicinity of Svalbard and Bear Island. In contrast, hydrothermal samples from the Seven Sisters, Jan Mayen and Loki’s Castle vent fields all demonstrate active microbial sulfate reduction. Rates increase from a few 10s to 100s of pmol SO42- cm-3 d-1 in active high-temperature hydrothermal chimneys, to 10s of nmol SO42- cm-3 d-1 in low-temperature barite chimneys and up to 110 nmol cm-3 d-1 in diffuse venting hydrothermal sediments in the Barite field at Loki’s Castle. Pore fluid and sediment geochemical data suggest that these high rates are sustained by organic compounds from microbial mats and vent fauna as well as methane supplied by high-temperature hydrothermal fluids. However, significant variation was observed between replicate hydrothermal samples and observation of high rates in seemingly inactive barite chimneys suggests that other electron donors may be important as well. Sediment sulfur isotope signatures concur with measured rates in the Barite field and indicate that microbial sulfate reduction has occurred in the hydrothermal sediments since the recent geological past. Our findings indicate that basalt-hosted vent fields provide sufficient electron donors to support microbial sulfate reduction in high- and low-temperature hydrothermal areas in settings that otherwise show very low sulfate reduction rates.</p

    Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

    Get PDF
    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki’s Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition
    corecore