360 research outputs found
Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype.
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldTo determine if neuregulin 1 (NRG1) is associated with schizophrenia in Asian populations, we investigated a Han Chinese population using both a family trio design and a case-control design. A total of 25 microsatellite markers and single nucleotide polymorphisms (SNPs) were genotyped spanning the 1.1 Mb NRG1 gene including markers of a seven-marker haplotype at the 5' end of the gene found to be in excess in Icelandic and Scottish schizophrenia patients. The alleles of the individual markers forming the seven marker at-risk haplotype are not likely to be causative as they are not in excess in patients in the Chinese population studied here. However using unrelated patients, we find a novel haplotype (HAP(China 1)), immediately upstream of the Icelandic haplotype, in excess in patients (11.9% in patients vs 4.2% in controls; P=0.0000065, risk ratio (rr) 3.1), which was not significant when parental controls were used. Another haplotype (HAP(China 2)) overlapping the Icelandic risk haplotype was found in excess in the Chinese (8.5% of patients vs 4.0% of unrelated controls; P=0.003, rr 2.2) and was also significant using parental controls only (P=0.0047, rr 2.1). A four-marker haplotype at the 3' end of the NRG1 gene, HAP(China 3), was found at a frequency of 23.8% in patients and 13.7% in nontransmitted parental haplotypes (P=0.000042, rr=2.0) but was not significant in the case-control comparison. We conclude that different haplotypes within the boundaries of the NRG1 gene may be associated with schizophrenia in the Han Chinese
Impact of the AHI1 Gene on the Vulnerability to Schizophrenia: A Case-Control Association Study
BackgroundThe Abelson helper integration-1 (AHI1) gene is required for both cerebellar and cortical development in humans. While the accelerated evolution of AHI1 in the human lineage indicates a role in cognitive (dys)function, a linkage scan in large pedigrees identified AHI1 as a positional candidate for schizophrenia. To further investigate the contribution of AHI1 to the susceptibility of schizophrenia, we evaluated the effect of AHI1 variation on the vulnerability to psychosis in two samples from Spain and Germany.Methodology/Principal Findings29 single-nucleotide polymorphisms (SNPs) located in a genomic region including the AHI1 gene were genotyped in two samples from Spain (280 patients with psychotic disorders; 348 controls) and Germany (247 patients with schizophrenic disorders; 360 controls). Allelic, genotypic and haplotype frequencies were compared between cases and controls in both samples separately, as well as in the combined sample. The effect of genotype on several psychopathological measures (BPRS, KGV, PANSS) assessed in a Spanish subsample was also evaluated. We found several significant associations in the Spanish sample. Particularly, rs7750586 and rs911507, both located upstream of the AHI1 coding region, were found to be associated with schizophrenia in the analysis of genotypic (p = 0.0033, and 0.031, respectively) and allelic frequencies (p = 0.001 in both cases). Moreover, several other risk and protective haplotypes were detected (0.006<p<0.036). Joint analysis also supported the association of rs7750586 and rs911507 with the risk for schizophrenia. The analysis of clinical measures also revealed an effect on symptom severity (minimum P value = 0.0037).Conclusions/SignificanceOur data support, in agreement with previous reports, an effect of AHI1 variation on the susceptibility to schizophrenia in central and southern European populations
Duplications in RB1CC1 are associated with schizophrenia; identification in large European sample sets
Schizophrenia (SCZ) is a severe and debilitating neuropsychiatric disorder with an estimated heritability of ~80%. Recently, de novo mutations, identified by next-generation sequencing (NGS) technology, have been suggested to contribute to the risk of developing SCZ. Although these studies show an overall excess of de novo mutations among patients compared with controls, it is not easy to pinpoint specific genes hit by de novo mutations as actually involved in the disease process. Importantly, support for a specific gene can be provided by the identification of additional alterations in several independent patients. We took advantage of existing genome-wide single-nucleotide polymorphism data sets to screen for deletions or duplications (copy number variations, CNVs) in genes previously implicated by NGS studies. Our approach was based on the observation that CNVs constitute part of the mutational spectrum in many human disease-associated genes. In a discovery step, we investigated whether CNVs in 55 candidate genes, suggested from NGS studies, were more frequent among 1637 patients compared with 1627 controls. Duplications in RB1CC1 were overrepresented among patients. This finding was followed-up in large, independent European sample sets. In the combined analysis, totaling 8461 patients and 112 871 controls, duplications in RB1CC1 were found to be associated with SCZ (P=1.29 × 10−5; odds ratio=8.58). Our study provides evidence for rare duplications in RB1CC1 as a risk factor for SCZ
The Role of TiO2 Doping on RuO2-Coated Electrodes for the Water Oxidation Reaction
Electrochemical water splitting into H2 and O2 presents a significant and challenging energy loss due to the high overpotential required at the anode. Today, in industrially relevant applications, dimensionally stable anodes (DSA) based on the electrocatalytic active RuO2 are conventionally utilized. To enhance the resistance against corrosion, incorporation of TiO2 in the RuO2-coated electrodes is widely employed. In the present work we have used scanning electrochemical microscopy (SECM) to demonstrate that TiO2-doped RuO2-coated electrodes, in addition to being more durable, also show an electrocatalytic activity that is, on average, 13% higher as compared to the pure RuO2-coated electrodes. We also demonstrate that cracks in the pure RuO2 coating are the most active zones, probably because Ti from the Ti support has diffused into the first applied layer of the RuO2 coating. To reveal the nature of this enhanced activity for water oxidation displayed on TiO2-doped RuO2 electrodes, we have employed X-ray photoelectron spectroscopy (XPS) for material characterization. The results show that the electrocatalytic activity enhancement displayed on the mixed (Ru1–x:Tix)O2 coating is promoted through a charge transfer from the RuO2 to the TiO2, which provides new and more reactive sites designated as activated RuO2δ+.This study has partly been carried out in the framework of the European Commission FP7 Initial Training Network “ELCAT”, Grant Agreement No. 214936-2. Portions of this research were performed at SPring-8 with the approval of Japan Synchrotron Radiation Research Institute as Nanotechnology Support Project of the Ministry of Education, Culture, Sports, Science and Technology (Proposal No. 2007A2005 and 2008A1671/BL-47XU)
Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy
Background Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. Methods We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. Results 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. Conclusions We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults
DISC1 genetics, biology and psychiatric illness
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain
Rare and Common Variants Conferring Risk of Tooth Agenesis
We present association results from a large genome-wide association study of tooth agenesis (TA) as well as selective TA, including 1,944 subjects with congenitally missing teeth, excluding third molars, and 338,554 controls, all of European ancestry. We also tested the association of previously identified risk variants, for timing of tooth eruption and orofacial clefts, with TA. We report associations between TA and 9 novel risk variants. Five of these variants associate with selective TA, including a variant conferring risk of orofacial clefts. These results contribute to a deeper understanding of the genetic architecture of tooth development and disease. The few variants previously associated with TA were uncovered through candidate gene studies guided by mouse knockouts. Knowing the etiology and clinical features of TA is important for planning oral rehabilitation that often involves an interdisciplinary approach
- …
