31 research outputs found

    Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells

    Get PDF
    Directed specification and prospective isolation of chondrogenic paraxial mesoderm progeny from human pluripotent stem (PS) cells have not yet been achieved. Here we report the successful generation of KDRβˆ’PDGFRΞ±+ progeny expressing paraxial mesoderm genes and the mesendoderm reporter MIXL1-GFP in a chemically defined medium containing the canonical WNT signaling activator, BMP-inhibitor, and the Nodal/Activin/TGFΞ² signaling controller. Isolated (GFP+)KDRβˆ’PDGFRΞ±+ mesoderm cells were sensitive to sequential addition of the three chondrogenic factors PDGF, TGFΞ² and BMP. Under these conditions, the cells showed robust chondrogenic activity in micromass culture, and generated a hyaline-like translucent cartilage particle in serum-free medium. In contrast, both STRO1+ mesenchymal stem/stromal cells from adult human marrow and mesenchymal cells spontaneously arising from hPS cells showed a relatively weaker chondrogenic response in vitro, and formed more of the fibrotic cartilage particles. Thus, hPS cell-derived KDRβˆ’PDGFRΞ±+ paraxial mesoderm-like cells have potential in engineered cartilage formation and cartilage repair

    Tissue engineering of functional articular cartilage: the current status

    Get PDF
    Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality

    Staphylococcus argenteus

    No full text

    Staphylococcus aureus Clinical Isolates: Antibiotic Susceptibility, Molecular Characteristics, and Ability to Form Biofilm

    Get PDF
    Periodic monitoring of Staphylococcus aureus characteristics in a locality is imperative as their drug-resistant variants cause treatment problem. In this study, antibiograms, prevalence of toxin genes (sea-see, seg-ser, seu, tsst-1, eta, etb, and etd), PFGE types, accessory gene regulator (agr) groups, and ability to form biofilm of 92 S. aureus Thailand clinical isolates were investigated. They were classified into 10 drug groups: groups 1–7 (56 isolates) were methicillin resistant (MRSA) and 8–10 (36 isolates) were methicillin sensitive (MSSA). One isolate did not have any toxin gene, 4 isolates carried one toxin gene (seq), and 87 isolates had two or more toxin genes. No isolate had see, etb, or tsst-1; six isolates had eta or etd. Combined seg-sei-sem-sen-seo of the highly prevalent egc locus was 26.1%. The seb, sec, sel, seu, and eta associated significantly with MSSA; sek was more in MRSA. The sek-seq association was 52.17% while combined sed-sej was not found. Twenty-three PFGE types were revealed, no association of toxin genes with PFGE types. All four agr groups were present; agr group 1 was predominant (58.70%) but agr group 2 strains carried more toxin genes and were more frequent toxin producers. Biofilm formation was found in 72.83% of the isolates but there was no association with antibiograms. This study provides insight information on molecular and phenotypic markers of Thailand S. aureus clinical isolates which should be useful for future active surveillance that aimed to control a spread of existing antimicrobial resistant bacteria and early recognition of a newly emerged variant

    Supplementary Material for: Intranasal, Liposome-Adjuvanted Cockroach Allergy Vaccines Made of Refined Major Allergen and Whole-Body Extract of <b><i>Periplaneta americana</i></b>

    No full text
    <b><i>Background:</i></b> Cockroach (CR) allergens frequently cause severe asthma in CR-sensitized subjects. Allergen-specific immunotherapy causes a shift of allergic Th2 responses towards Th1 and/or regulatory T cell (Treg) responses which reduce airway inflammation and prevent disease progression. Data are relatively limited on immunotherapy via CR allergy vaccine. <b><i>Methods:</i></b> The therapeutic efficacy of an intranasal liposome-adjuvant vaccine made of a refined <i>Periplaneta americana</i> arginine kinase (AK) was compared to the liposome-entrapped <i>P. americana</i> crude extract (CRE) vaccine. Adult BALB/c mice were rendered allergic to CRE. Three allergic mouse groups were immunized intranasally on alternate days with 8 doses of liposome-entrapped CRE (L-CRE), liposome-entrapped AK and placebo, respectively. One week later, all mice received a nebulized CRE provocation. Evaluation of vaccine efficacy was performed 1 day after provocation. <b><i>Results:</i></b> Liposome-entrapped native AK attenuated airway inflammation after the CRE provocation and caused a shift of allergic Th2 to Th1 and Treg responses. The L-CRE also induced a shift from the Th2 to the Th1 response but did not induce a Treg response and could not attenuate the airway inflammation upon allergen reexposure. <b><i>Conclusions:</i></b> Intranasal liposome-adjuvant CR allergy vaccine containing native AK (Per a 9) is better than L-CRE in attenuating allergic airway inflammation. The findings of this study not only document a more comprehensive and beneficial immune response induced by the refined allergen vaccine but also raise the point that the shift from the Th2 to the Th1 response alone might not correlate with improved airway histopathology, clinical outcome and quality of life

    Graham Bickley in uniform

    No full text
    Melioidosis is a fatal infectious disease caused by the environmental bacterium Burkholderia pseudomallei. It is highly endemic in Asia and northern Australia but neglected in many other tropical countries. Melioidosis patients have a wide range of clinical manifestations and definitive diagnosis requires bacterial culture which can be time-consuming. A reliable rapid serological tool is greatly needed for disease surveillance and diagnosis. We previously demonstrated by ELISA that a hemolysin-coregulated protein (Hcp1) is a promising target for serodiagnosis of melioidosis. In this study, we have developed a rapid immunochromatography test (ICT) using Hcp1 as the target antigen (Hcp1-ICT). We evaluated this test for specific antibody detection using serum samples obtained from 4 groups of human subjects including: (i) 487 culture-confirmed melioidosis patients from four hospitals in northeast Thailand; (ii) 202 healthy donors from northeast Thailand; (iii) 90 U.S. healthy donors and (iv) 207 patients infected with other organisms. Compared to culture results as a gold standard, the sensitivity of ICT for all hospitals was 88.3%. The specificities for Thai donors and U.S. donors were 86.1% and 100%, respectively and for other infections was 91.8%. The results of the Hcp1-ICT demonstrated 92.4% agreement with the Hcp1-ELISA with kappa value of 0.829 and is much improved when compared with the current serological method, indirect hemagglutination assay (IHA) (69.5% sensitivity and 67.6% specificity for Thais). The Hcp1-ICT represents a potential point-of-care (POC) test and may be used to replace the IHA for screening of melioidosis in hospitals as well as resource-limited areas

    Hybrid &amp; El Tor variant biotypes of Vibrio cholerae O1 in Thailand

    No full text
    Background &amp; objectives : El Tor Vibrio cholerae O1 carrying ctxB C trait, so-called El Tor variant that causes more severe symptoms than the prototype El Tor strain, first detected in Bangladesh was later shown to have emerged in India in 1992. Subsequently, similar V. cholerae strains were isolated in other countries in Asia and Africa. Thus, it was of interest to investigate the characteristics of V. cholerae O1 strains isolated chronologically (from 1986 to 2009) in Thailand. Methods: A total of 330 V. cholerae O1 Thailand strains from hospitalized patients with cholera isolated during 1986 to 2009 were subjected to conventional biotyping i.e., susceptibility to polymyxin B, chicken erythrocyte agglutination (CCA) and Voges-Proskauer (VP) test. The presence of ctxA, ctxB, zot, ace, toxR, tcpA C , tcpA E, hlyA C and hlyA E were examined by PCR. Mismatch amplification mutation assay (MAMA) - and conventional- PCRs were used for differentiating ctxB and rstR alleles. Results: All 330 strains carried the El Tor virulence gene signature. Among these, 266 strains were typical El Tor (resistant to 50 units of polymyxin B and positive for CCA and VP test) while 64 had mixed classical and El Tor phenotypes (hybrid biotype). Combined MAMA-PCR and the conventional biotyping methods revealed that 36 strains of 1986-1992 were either typical El Tor, hybrid, El Tor variant or unclassified biotype. The hybrid strains were present during 1986-2004. El Tor variant strains were found in 1992, the same year when the typical El Tor strains disappeared. All 294 strains of 1993-2009 carried ctxBC ; 237 were El Tor variant and 57 were hybrid. Interpretation &amp; conclusions : In Thailand, hybrid V. cholerae O1 (mixed biotypes), was found since 1986. Circulating strains, however, are predominantly El Tor variant (El Tor biotype with ctxB C)
    corecore