14 research outputs found

    Small molecules, big effects: The role of microRNAs in regulation of cardiomyocyte death

    Get PDF
    MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranscriptional regulation of gene expression, and exerting regulatory roles in plethora of biological processes. In recent years, miRNAs have received increased attention for their crucial role in health and disease, including in cardiovascular disease. This review summarizes the role of miRNAs in regulation of cardiac cell death/cell survival pathways, including apoptosis, autophagy and necrosis. It is envisaged that these miRNAs may explain the mechanisms behind the pathogenesis of many cardiac diseases, and, most importantly, may provide new avenues for therapeutic intervention that will limit cardiomyocyte cell death before it irreversibly affects cardiac function. Through an indepth literature analysis coupled with integrative bioinformatics (pathway and synergy analysis), we dissect here the landscape of complex relationships between the apoptosis-regulating miRNAs in the context of cardiomyocyte cell death (including regulation of autophagy-apoptosis cross talk), and examine the gaps in our current understanding that will guide future investigations.C

    NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy

    Get PDF
    <b>Aims:</b> Ischemic retinal diseases such as retinopathy of prematurity are major causes of blindness due to damage to the retinal microvasculature. Despite this clinical situation, retinopathy of prematurity is mechanistically poorly understood. Therefore, effective preventative therapies are not available. However, hypoxic-induced increases in reactive oxygen species (ROS) have been suggested to be involved with NADPH oxidases (NOX), the only known dedicated enzymatic source of ROS. Our major aim was to determine the contribution of NOX isoforms (1, 2, and 4) to a rodent model of retinopathy of prematurity. <b>Results:</b> Using a genetic approach, we determined that only mice with a deletion of NOX1, but not NOX2 or NOX4, were protected from retinal neovascularization and vaso-obliteration, adhesion of leukocytes, microglial accumulation, and the increased generation of proangiogenic and proinflammatory factors and ROS. We complemented these studies by showing that the specific NOX inhibitor, GKT137831, reduced vasculopathy and ROS levels in retina. The source of NOX isoforms was evaluated in retinal vascular cells and neuro-glial elements. Microglia, the immune cells of the retina, expressed NOX1, 2, and 4 and responded to hypoxia with increased ROS formation, which was reduced by GKT137831. <b>Innovation:</b> Our studies are the first to identify the NOX1 isoform as having an important role in the pathogenesis of retinopathy of prematurity. <b>Conclusions:</b> Our findings suggest that strategies targeting NOX1 have the potential to be effective treatments for a range of ischemic retinopathie

    Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure

    Get PDF
    Background-Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. Methods and Results-We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. Conclusions-Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.Peer reviewe

    Mechanism of potentiation of endosulfan cytotoxicity by thiram in Ehrlich ascites tumor cells

    No full text
    Cytotoxicity of the two pesticides, thiram and endosulfan, have been studied in Ehrlich ascites tumor cells. Thiram cytotoxicity was much lower than that of endosulfan with LC50 (1 h exposure) of 4.02 and 1.12 mM, respectively. The cytotoxic action of the pesticides on the cells were characterised by glutathione depletion, induction of reactive oxygen species (ROS). The cell death induced by the pesticides was of necrotic type as confirmed by lactate dehydrogenase (LDH) leakage. At non-cytotoxic concentration, thiram potentiated the cytotoxicity of endosulfan when cells were exposed to a mixture of both chemicals. The mechanisms involved in the potentiation of cytotoxicity include excessive glutathione depletion and induction ROS which were higher than the additive effects of individual chemicals. The study demonstrates the importance of pesticide interactions in toxicity risk assessment.C

    Reactive oxygen species, Nox and angiotensin II in angiogenesis: Implications for retinopathy

    No full text
    Pathological angiogenesis is a key feature of many diseases including retinopathies such as ROP (retinopathy of prematurity) and DR (diabetic retinopathy). There is considerable evidence that increased production of ROS (reactive oxygen species) in the retina participates in retinal angiogenesis, although the mechanisms by which this occurs are not fully understood. ROS is produced by a number of pathways, including the mitochondrial electron transport chain, cytochrome P450, xanthine oxidase and uncoupled nitric oxide synthase. The family of NADPH oxidase (Nox) enzymes are likely to be important given that their primary function is to produce ROS. Seven isoforms of Nox have been identified named Nox1-5, Duox (dual oxidase) 1 and Duox2. Nox1, Nox2 and Nox4 have been most extensively studied and are implicated in the development of conditions such as hypertension, cardiovascular disease and diabetic nephropathy. In recent years, evidence has accumulated to suggest that Nox1, Nox2 and Nox4 participate in pathological angiogenesis; however, there is no clear consensus about which Nox isoform is primarily responsible. In terms of retinopathy, there is growing evidence that Nox contribute to vascular injury. The RAAS (renin-angiotensin-aldosterone system), and particularly AngII (angiotensin II), is a key stimulator of Nox. It is known that a local RAAS exists in the retina and that blockade of AngII and aldosterone attenuate pathological angiogenesis in the retina. Whether the RAAS influences the production of ROS derived from Nox in retinopathy is yet to be fully determined. These topics will be reviewed with a particular emphasis on ROP and DR.C

    MicroRNAs mediate the cardioprotective effect of angiotensin-converting enzyme inhibition in acute kidney injury

    No full text
    Cardiovascular disease, including cardiac hypertrophy, is common in patients with kidney disease and can be partially attenuated using blockers of the renin-angiotensin system (RAS). It is unknown whether cardiac microRNAs contribute to the pathogenesis of cardiac hypertrophy or to the protective effect of RAS blockade in kidney disease. Using a subtotal nephrectomy rat model of kidney injury, we investigated changes in cardiac microRNAs that are known to have direct target genes involved in the regulation of apoptosis, fibrosis, and hypertrophy. The effect of treatment with the angiotensin-converting enzyme (ACE) inhibitor ramipril on cardiac microRNAs was also investigated. Kidney injury led to a significant increase in cardiac microRNA-212 and mi- croRNA-132 expression. Ramipril reduced cardiac hypertrophy, attenuated the increase in microRNA-212 and microRNA-132, and significantly increased microRNA-133 and microRNA-1 expression. There was altered expression of caspase-9, B cell lymphoma-2, transforming growth factor-β, fibronectin 1, collagen type 1A1, and forkhead box protein O3, which are all known to be involved in the regulation of apoptosis, fibrosis, and hypertrophy in cardiac cells while being targets for the above microRNAs. ACE inhibitor treatment increased expression of microRNA-133 and microRNA-1. The inhibitory action of ACE inhibitor treatment on increased cardiac NADPH oxidase isoform 1 expression after subtotal nephrectomy surgery suggests that inhibition of oxidative stress is also one of mechanism of ACE inhibitor-mediated cardioprotection. These finding suggests the involvement of microRNAs in the cardioprotective action of ACE inhibition in acute renal injury, which is mediated through an inhibitory action on profibrotic and proapoptotic target genes and stimulatory action on antihypertrophic and antiapoptotic target genes. © 2015 the American Physiological Society. Funding: APP1048285; NHMRC; National Health and Medical Research Counci

    Contribution of microRNA to pathological fibrosis in cardio-renal syndrome:impact of uremic toxins

    Get PDF
    Progressive reduction in kidney function in patients following myocardial infarction (MI) is associated with an increase in circulating uremic toxins levels leading to increased extracellular matrix deposition. We have recently reported that treatment with uremic toxin adsorbent AST-120 in rats with MI inhibits serum levels of uremic toxin indoxyl sulfate (IS) and downregulates expression of cardiac profibrotic cytokine transforming growth factor beta (TGF-β1). In this study, we examined the effect of uremic toxins post-MI on cardiac microRNA-21 and microRNA-29b expression, and also the regulation of target genes and matrix remodeling proteins involved in TGFβ1 and angiotensin II signaling pathways. Sixteen weeks after MI, cardiac tissues were assessed for pathological and molecular changes. The percentage area of cardiac fibrosis was 4.67 ± 0.17 in vehicle-treated MI, 2.9 ± 0.26 in sham, and 3.32 ± 0.38 in AST-120-treated MI, group of rats. Compared to sham group, we found a twofold increase in the cardiac expression of microRNA-21 and 0.5-fold decrease in microRNA-29b in heart tissue from vehicle-treated MI. Treatment with AST-120 lowered serum IS levels and attenuated both, cardiac fibrosis and changes in expression of these microRNAs observed after MI. We also found increased mRNA expression of angiotensin-converting enzyme (ACE) and angiotensin receptor 1a (Agtr1a) in cardiac tissue collected from MI rats. Treatment with AST-120 attenuated both, expression of ACE and Agtr1a mRNA. Exposure of rat cardiac fibroblasts to IS upregulated angiotensin II signaling and altered the expression of both microRNA-21 and microRNA-29b. These results collectively suggest a clear role of IS in altering microRNA-21 and microRNA-29b in MI heart, via a mechanism involving angiotensin signaling pathway, which leads to cardiac fibrosis

    Contribution of microRNA to pathological fibrosis in cardio-renal syndrome:impact of uremic toxins

    Get PDF
    Progressive reduction in kidney function in patients following myocardial infarction (MI) is associated with an increase in circulating uremic toxins levels leading to increased extracellular matrix deposition. We have recently reported that treatment with uremic toxin adsorbent AST-120 in rats with MI inhibits serum levels of uremic toxin indoxyl sulfate (IS) and downregulates expression of cardiac profibrotic cytokine transforming growth factor beta (TGF-β1). In this study, we examined the effect of uremic toxins post-MI on cardiac microRNA-21 and microRNA-29b expression, and also the regulation of target genes and matrix remodeling proteins involved in TGFβ1 and angiotensin II signaling pathways. Sixteen weeks after MI, cardiac tissues were assessed for pathological and molecular changes. The percentage area of cardiac fibrosis was 4.67 ± 0.17 in vehicle-treated MI, 2.9 ± 0.26 in sham, and 3.32 ± 0.38 in AST-120-treated MI, group of rats. Compared to sham group, we found a twofold increase in the cardiac expression of microRNA-21 and 0.5-fold decrease in microRNA-29b in heart tissue from vehicle-treated MI. Treatment with AST-120 lowered serum IS levels and attenuated both, cardiac fibrosis and changes in expression of these microRNAs observed after MI. We also found increased mRNA expression of angiotensin-converting enzyme (ACE) and angiotensin receptor 1a (Agtr1a) in cardiac tissue collected from MI rats. Treatment with AST-120 attenuated both, expression of ACE and Agtr1a mRNA. Exposure of rat cardiac fibroblasts to IS upregulated angiotensin II signaling and altered the expression of both microRNA-21 and micro- RNA-29b. These results collectively suggest a clear role of IS in altering microRNA-21 and microRNA-29b in MI heart, via a mechanism involving angiotensin signaling pathway, which leads to cardiac fibrosis. © 2015 The Authors
    corecore