70 research outputs found

    Effective resting-state connectivity in severe unipolar depression before and after electroconvulsive therapy

    Get PDF
    BACKGROUND: Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depressive disorders. A recent multi-center study found no consistent changes in correlation-based (undirected) resting-state connectivity after ECT. Effective (directed) connectivity may provide more insight into the working mechanism of ECT. OBJECTIVE: We investigated whether there are consistent changes in effective resting-state connectivity. METHODS: This multi-center study included data from 189 patients suffering from severe unipolar depression and 59 healthy control participants. Longitudinal data were available for 81 patients and 24 healthy controls. We used dynamic causal modeling for resting-state functional magnetic resonance imaging to determine effective connectivity in the default mode, salience and central executive networks before and after a course of ECT. Bayesian general linear models were used to examine differences in baseline and longitudinal effective connectivity effects associated with ECT and its effectiveness. RESULTS: Compared to controls, depressed patients showed many differences in effective connectivity at baseline, which varied according to the presence of psychotic features and later treatment outcome. Additionally, effective connectivity changed after ECT, which was related to ECT effectiveness. Notably, treatment effectiveness was associated with decreasing and increasing effective connectivity from the posterior default mode network to the left and right insula, respectively. No effects were found using correlation-based (undirected) connectivity. CONCLUSIONS: A beneficial response to ECT may depend on how brain regions influence each other in networks important for emotion and cognition. These findings further elucidate the working mechanisms of ECT and may provide directions for future non-invasive brain stimulation research

    Effective resting-state connectivity in severe unipolar depression before and after electroconvulsive therapy

    Get PDF
    Background Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depressive disorders. A recent multi-center study found no consistent changes in correlation-based (undirected) resting-state connectivity after ECT. Effective (directed) connectivity may provide more insight into the working mechanism of ECT. Objective We investigated whether there are consistent changes in effective resting-state connectivity. Methods This multi-center study included data from 189 patients suffering from severe unipolar depression and 59 healthy control participants. Longitudinal data were available for 81 patients and 24 healthy controls. We used dynamic causal modeling for resting-state functional magnetic resonance imaging to determine effective connectivity in the default mode, salience and central executive networks before and after a course of ECT. Bayesian general linear models were used to examine differences in baseline and longitudinal effective connectivity effects associated with ECT and its effectiveness. Results Compared to controls, depressed patients showed many differences in effective connectivity at baseline, which varied according to the presence of psychotic features and later treatment outcome. Additionally, effective connectivity changed after ECT, which was related to ECT effectiveness. Notably, treatment effectiveness was associated with decreasing and increasing effective connectivity from the posterior default mode network to the left and right insula, respectively. No effects were found using correlation-based (undirected) connectivity. Conclusions A beneficial response to ECT may depend on how brain regions influence each other in networks important for emotion and cognition. These findings further elucidate the working mechanisms of ECT and may provide directions for future non-invasive brain stimulation research.publishedVersio

    Development and validation of a multimodal neuroimaging biomarker for electroconvulsive therapy outcome in depression: A multicenter machine learning analysis

    Get PDF
    Background Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting. Methods Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier. Results Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82–0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers (N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70–0.73 AUC). Conclusions These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.publishedVersio

    Serum brain-derived neurotrophic factor: Determinants and relationship with depressive symptoms in a community population of middle-aged and elderly people

    Get PDF
    OBJECTIVES: Brain-derived neurotrophic factor (BDNF) is involved in major depressive disorder and neurodegenerative diseases. Clinical studies, showing decreased serum BDNF levels, are difficult to interpret due to limited knowledge of potential confounders and mixed results for age and sex effects. We explored potential determinants of serum BDNF levels in a community sample of 1230 subjects. METHODS: Multiple linear regression analyses with serum BDNF level as the dependent variable were conducted to explore the effect of four categories of potential BDNF determinants (sampling characteristics, sociodemographic variables, lifestyle factors and somatic diseases) and of self-reported depressive symptoms (Beck's Depression Inventory (BDI). RESULTS: Our results show that BDNF levels decline with age in women, whereas in men levels remain stable. Moreover, after controlling for age and gender, the assays still showed lower serum BDNF levels with higher BDI sum scores. Effects remained significant after correction for two main confounders (time of sampling and smoking), suggesting that they serve as molecular trait factors independent of lifestyle factors. CONCLUSIONS: Given the age-sex interaction on serum BDNF levels and the known association between BDNF and gonadal hormones, research is warranted to delineate the effects of the latter interaction on the risk of psychiatric and neurodegenerative diseases

    Volume of the human hippocampus and clinical response following electroconvulsive therapy

    Get PDF
    BACKGROUND: Hippocampal enlargements are commonly reported after electroconvulsive therapy (ECT). To clarify mechanisms, we examined if ECT-induced hippocampal volume change relates to dose (number of ECT sessions and electrode placement) and acts as a biomarker of clinical outcome. METHODS: Longitudinal neuroimaging and clinical data from 10 independent sites participating in the Global ECT-Magnetic Resonance Imaging Research Collaboration (GEMRIC) were obtained for mega-analysis. Hippocampal volumes were extracted from structural magnetic resonance images, acquired before and after patients (n = 281) experiencing a major depressive episode completed an ECT treatment series using right unilateral and bilateral stimulation. Untreated nondepressed control subjects (n = 95) were scanned twice. RESULTS: The linear component of hippocampal volume change was 0.28% (SE 0.08) per ECT session (p < .001). Volume change varied by electrode placement in the left hippocampus (bilateral, 3.3 +/- 2.2%, d = 1.5; right unilateral, 1.6 +/- 2.1%, d = 0.8; p < .0001) but not the right hippocampus (bilateral, 3.0 +/- 1.7%, d = 1.8; right unilateral, 2.7 +/- 2.0%, d = 1.4; p = .36). Volume change for electrode placement per ECT session varied similarly by hemisphere. Individuals with greater treatment-related volume increases had poorer outcomes (Montgomery-Asberg Depression Rating Scale change -1.0 [SE 0.35], per 1% volume increase, p = .005), although the effects were not significant after controlling for ECT number (slope -0.69 [SE 0.38], p = .069). CONCLUSIONS: The number of ECT sessions and electrode placement impacts the extent and laterality of hippocampal enlargement, but volume change is not positively associated with clinical outcome. The results suggest that the high efficacy of ECT is not explained by hippocampal enlargement, which alone might not serve as a viable biomarker for treatment outcome

    Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol

    Get PDF
    Contains fulltext : 96704.pdf (publisher's version ) (Open Access)BACKGROUND: Cerebral small vessel disease (SVD) is a frequent finding on CT and MRI scans of elderly people and is related to vascular risk factors and cognitive and motor impairment, ultimately leading to dementia or parkinsonism in some. In general, the relations are weak, and not all subjects with SVD become demented or get parkinsonism. This might be explained by the diversity of underlying pathology of both white matter lesions (WML) and the normal appearing white matter (NAWM). Both cannot be properly appreciated with conventional MRI. Diffusion tensor imaging (DTI) provides alternative information on microstructural white matter integrity. The association between SVD, its microstructural integrity, and incident dementia and parkinsonism has never been investigated. METHODS/DESIGN: The RUN DMC study is a prospective cohort study on the risk factors and cognitive and motor consequences of brain changes among 503 non-demented elderly, aged between 50-85 years, with cerebral SVD. First follow up is being prepared for July 2011. Participants alive will be included and invited to the research centre to undergo a structured questionnaire on demographics and vascular risk factors, and a cognitive, and motor, assessment, followed by a MRI protocol including conventional MRI, DTI and resting state fMRI. DISCUSSION: The follow up of the RUN DMC study has the potential to further unravel the causes and possibly better predict the consequences of changes in white matter integrity in elderly with SVD by using relatively new imaging techniques. When proven, these changes might function as a surrogate endpoint for cognitive and motor function in future therapeutic trials. Our data could furthermore provide a better understanding of the pathophysiology of cognitive and motor disturbances in elderly with SVD. The execution and completion of the follow up of our study might ultimately unravel the role of SVD on the microstructural integrity of the white matter in the transition from "normal" aging to cognitive and motor decline and impairment and eventually to incident dementia and parkinsonism
    corecore